Tag Archives: truck mounted crane hydraulic

China Professional CHINAMFG 10 Ton Hydraulic Telescopic Boom Truck Mounted Crane

Product Description

Product Description

 

PRODUCT DESCRIPTIONS
Super-above Truck-mounted crane 
A truck-mounted crane is grouped together as a means of transport. By the boom, lifting torque, frame, legs and other
parts. Crane left and right operation can be both positive and negative 360-degree rotation, can also be full rotation.
Compared special crane trucks with crane, with a high speed, climbing ability characteristics. Enables fast movements,
efficiency, energy-saving.With a flexible, easy to operate, efficient, safe, and reliable.
A truck-mounted crane is grouped together as a means of transport. By the boom, lifting torque, frame, legs and other parts.
Crane left and right operation can be both positive and negative 360-degree rotation, can also be full rotation. Compared
special crane trucks with crane, with a high speed, climbing ability characteristics. Enables fast movements, efficiency,
energy-saving.With a flexible, easy to operate, efficient, safe, and reliable.

TECHNICAL PARAMETERS

Item Unit References
Max Lifting Moment t*m 20
Max Lifting Capacity kg 10000
Boom length m 4.81~11.85
Max Lifting Height m 13.2
Derick range ° 0~75°
Outrigger span mm 2280~5580
Size(length×width×height) mm 5140×2430×3260

1.Throttle Control System

        Changing the form of the previous manipulation and throttle operation individually, the Realization of the bilateral
handle synchronous and driving throttle acceleration and deceleration automatically, due to the speed change steady,
it can easily carry out the lifting work.

2.End position automatic hook device

        Maximum savings in preparation time before and after the operation, to ensure that the customer’s vehicle could be in a
driving state in the shortest time and prevent crane damage accident caused by hoist swing to enhance the safety of driving.

3. Hoisting overwinter device

        If a user is negligent or unfamiliar with the operation of lifting hooks, the hoisting overwinter device will stop hook-raise
in time, to prevent the safety of personnel and property caused by the fracture of wire rope.

4.Slewing locking device

        Slewing locking device can ensure that the lifting arm does not sway because of the centrifugal force during the driving
and steering process of the vehicle,to avoid all kinds of accidents caused by swaying.

5.Torque limiter

        It can select torque limit overload protection device to prevent users because of  negligence or unfamiliar with the lifting
operation principle of overload operation, thereby causing the vehicle rollover and crane damage accidents.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available-Spare Parts,Job Site Training
Warranty: 1year
Certification: GS, RoHS, CE, ISO9001
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

Can you describe the various post-molding processes, such as assembly or secondary operations, for injection molded parts?

Post-molding processes play a crucial role in the production of injection molded parts. These processes include assembly and secondary operations that are performed after the initial molding stage. Here’s a detailed explanation of the various post-molding processes for injection molded parts:

1. Assembly:

Assembly involves joining multiple injection molded parts together to create a finished product or sub-assembly. The assembly process can include various techniques such as mechanical fastening (screws, clips, or snaps), adhesive bonding, ultrasonic welding, heat staking, or solvent welding. Assembly ensures that the individual molded parts are securely combined to achieve the desired functionality and structural integrity of the final product.

2. Surface Finishing:

Surface finishing processes are performed to enhance the appearance, texture, and functionality of injection molded parts. Common surface finishing techniques include painting, printing (such as pad printing or screen printing), hot stamping, laser etching, or applying specialized coatings. These processes can add decorative features, branding elements, or improve the surface properties of the parts, such as scratch resistance or UV protection.

3. Machining or Trimming:

In some cases, injection molded parts may require additional machining or trimming to achieve the desired final dimensions or remove excess material. This can involve processes such as CNC milling, drilling, reaming, or turning. Machining or trimming is often necessary when tight tolerances, specific geometries, or critical functional features cannot be achieved solely through the injection molding process.

4. Welding or Joining:

Welding or joining processes are used to fuse or bond injection molded parts together. Common welding techniques for plastic parts include ultrasonic welding, hot plate welding, vibration welding, or laser welding. These processes create strong and reliable joints between the molded parts, ensuring structural integrity and functionality in the final product.

5. Insertion of Inserts:

Insertion involves placing metal or plastic inserts into the mold cavity before the injection molding process. These inserts can provide additional strength, reinforce threaded connections, or serve as mounting points for other components. Inserts can be placed manually or using automated equipment, and they become permanently embedded in the molded parts during the molding process.

6. Overmolding or Two-Shot Molding:

Overmolding or two-shot molding processes allow for the creation of injection molded parts with multiple layers or materials. In overmolding, a second material is molded over a pre-existing substrate, providing enhanced functionality, aesthetics, or grip. Two-shot molding involves injecting two different materials into different sections of the mold to create a single part with multiple colors or materials. These processes enable the integration of multiple materials or components into a single injection molded part.

7. Deflashing or Deburring:

Deflashing or deburring processes involve removing excess flash or burrs that may be present on the molded parts after the injection molding process. Flash refers to the excess material that extends beyond the parting line of the mold, while burrs are small protrusions or rough edges caused by the mold features. Deflashing or deburring ensures that the molded parts have smooth edges and surfaces, improving their appearance, functionality, and safety.

8. Inspection and Quality Control:

Inspection and quality control processes are performed to ensure that the injection molded parts meet the required specifications and quality standards. This can involve visual inspection, dimensional measurement, functional testing, or other specialized testing methods. Inspection and quality control processes help identify any defects, inconsistencies, or deviations that may require rework or rejection of the parts, ensuring that only high-quality parts are used in the final product or assembly.

9. Packaging and Labeling:

Once the post-molding processes are complete, the injection molded parts are typically packaged and labeled for storage, transportation, or distribution. Packaging can include individual part packaging, bulk packaging, or custom packaging based on specific requirements. Labeling may involve adding product identification, barcodes, or instructions for proper handling or usage.

These post-molding processes are vital in achieving the desired functionality, appearance, and quality of injection molded parts. They enable the integration of multiple components, surface finishing, dimensional accuracy, and assembly of the final products or sub-assemblies.

What industries and applications commonly utilize injection molded parts?

Injection molded parts find widespread use across various industries and applications due to their versatility, cost-effectiveness, and ability to meet specific design requirements. Here’s a detailed explanation of the industries and applications that commonly utilize injection molded parts:

1. Automotive Industry:

The automotive industry extensively relies on injection molded parts for both interior and exterior components. These parts include dashboards, door panels, bumpers, grilles, interior trim, seating components, electrical connectors, and various engine and transmission components. Injection molding enables the production of lightweight, durable, and aesthetically pleasing parts that meet the stringent requirements of the automotive industry.

2. Consumer Electronics:

Injection molded parts are prevalent in the consumer electronics industry. They are used in the manufacturing of components such as housings, buttons, bezels, connectors, and structural parts for smartphones, tablets, laptops, gaming consoles, televisions, cameras, and other electronic devices. Injection molding allows for the production of parts with precise dimensions, excellent surface finish, and the ability to integrate features like snap fits, hinges, and internal structures.

3. Medical and Healthcare:

The medical and healthcare industry extensively utilizes injection molded parts for a wide range of devices and equipment. These include components for medical devices, diagnostic equipment, surgical instruments, drug delivery systems, laboratory equipment, and disposable medical products. Injection molding offers the advantage of producing sterile, biocompatible, and precise parts with tight tolerances, ensuring safety and reliability in medical applications.

4. Packaging and Containers:

Injection molded parts are commonly used in the packaging and container industry. These parts include caps, closures, bottles, jars, tubs, trays, and various packaging components. Injection molding allows for the production of lightweight, durable, and visually appealing packaging solutions. The process enables the integration of features such as tamper-evident seals, hinges, and snap closures, contributing to the functionality and convenience of packaging products.

5. Aerospace and Defense:

The aerospace and defense industries utilize injection molded parts for a variety of applications. These include components for aircraft interiors, cockpit controls, avionics, missile systems, satellite components, and military equipment. Injection molding offers the advantage of producing lightweight, high-strength parts with complex geometries, meeting the stringent requirements of the aerospace and defense sectors.

6. Industrial Equipment:

Injection molded parts are widely used in industrial equipment for various applications. These include components for machinery, tools, pumps, valves, electrical enclosures, connectors, and fluid handling systems. Injection molding provides the ability to manufacture parts with excellent dimensional accuracy, durability, and resistance to chemicals, oils, and other harsh industrial environments.

7. Furniture and Appliances:

The furniture and appliance industries utilize injection molded parts for various components. These include handles, knobs, buttons, hinges, decorative elements, and structural parts for furniture, kitchen appliances, household appliances, and white goods. Injection molding enables the production of parts with aesthetic appeal, functional design, and the ability to withstand regular use and environmental conditions.

8. Toys and Recreational Products:

Injection molded parts are commonly found in the toy and recreational product industry. They are used in the manufacturing of plastic toys, games, puzzles, sporting goods, outdoor equipment, and playground components. Injection molding allows for the production of colorful, durable, and safe parts that meet the specific requirements of these products.

9. Electrical and Electronics:

Injection molded parts are widely used in the electrical and electronics industry. They are employed in the production of electrical connectors, switches, sockets, wiring harness components, enclosures, and other electrical and electronic devices. Injection molding offers the advantage of producing parts with excellent dimensional accuracy, electrical insulation properties, and the ability to integrate complex features.

10. Plumbing and Pipe Fittings:

The plumbing and pipe fittings industry relies on injection molded parts for various components. These include fittings, valves, connectors, couplings, and other plumbing system components. Injection molding provides the ability to manufacture parts with precise dimensions, chemical resistance, and robustness, ensuring leak-free connections and long-term performance.

In summary, injection molded parts are utilized in a wide range of industries and applications. The automotive, consumer electronics, medical and healthcare, packaging, aerospace and defense, industrial equipment, furniture and appliances, toys and recreational products, electrical and electronics, and plumbing industries commonly rely on injection molding for the production of high-quality, cost-effective, and functionally optimized parts.

China Professional CHINAMFG 10 Ton Hydraulic Telescopic Boom Truck Mounted Crane  China Professional CHINAMFG 10 Ton Hydraulic Telescopic Boom Truck Mounted Crane
editor by Dream 2024-05-03

China Hot selling CHINAMFG 10 Ton Hydraulic Telescopic Boom Truck Mounted Crane

Product Description

Product Description

 

PRODUCT DESCRIPTIONS
Super-above Truck-mounted crane 
A truck-mounted crane is grouped together as a means of transport. By the boom, lifting torque, frame, legs and other
parts. Crane left and right operation can be both positive and negative 360-degree rotation, can also be full rotation.
Compared special crane trucks with crane, with a high speed, climbing ability characteristics. Enables fast movements,
efficiency, energy-saving.With a flexible, easy to operate, efficient, safe, and reliable.
A truck-mounted crane is grouped together as a means of transport. By the boom, lifting torque, frame, legs and other parts.
Crane left and right operation can be both positive and negative 360-degree rotation, can also be full rotation. Compared
special crane trucks with crane, with a high speed, climbing ability characteristics. Enables fast movements, efficiency,
energy-saving.With a flexible, easy to operate, efficient, safe, and reliable.

TECHNICAL PARAMETERS

Item Unit References
Max Lifting Moment t*m 20
Max Lifting Capacity kg 10000
Boom length m 4.81~11.85
Max Lifting Height m 13.2
Derick range ° 0~75°
Outrigger span mm 2280~5580
Size(length×width×height) mm 5140×2430×3260

1.Throttle Control System

        Changing the form of the previous manipulation and throttle operation individually, the Realization of the bilateral
handle synchronous and driving throttle acceleration and deceleration automatically, due to the speed change steady,
it can easily carry out the lifting work.

2.End position automatic hook device

        Maximum savings in preparation time before and after the operation, to ensure that the customer’s vehicle could be in a
driving state in the shortest time and prevent crane damage accident caused by hoist swing to enhance the safety of driving.

3. Hoisting overwinter device

        If a user is negligent or unfamiliar with the operation of lifting hooks, the hoisting overwinter device will stop hook-raise
in time, to prevent the safety of personnel and property caused by the fracture of wire rope.

4.Slewing locking device

        Slewing locking device can ensure that the lifting arm does not sway because of the centrifugal force during the driving
and steering process of the vehicle,to avoid all kinds of accidents caused by swaying.

5.Torque limiter

        It can select torque limit overload protection device to prevent users because of  negligence or unfamiliar with the lifting
operation principle of overload operation, thereby causing the vehicle rollover and crane damage accidents.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available-Spare Parts,Job Site Training
Warranty: 1year
Certification: GS, RoHS, CE, ISO9001
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

What factors influence the design and tooling of injection molded parts for specific applications?

Several factors play a crucial role in influencing the design and tooling of injection molded parts for specific applications. The following are key factors that need to be considered:

1. Functionality and Performance Requirements:

The intended functionality and performance requirements of the part heavily influence its design and tooling. Factors such as strength, durability, dimensional accuracy, chemical resistance, and temperature resistance are essential considerations. The part’s design must be optimized to meet these requirements while ensuring proper functionality and performance in its intended application.

2. Material Selection:

The choice of material for injection molding depends on the specific application and its requirements. Different materials have varying properties, such as strength, flexibility, heat resistance, chemical resistance, and electrical conductivity. The material selection influences the design and tooling considerations, as the part’s geometry and structure must be compatible with the selected material’s properties.

3. Part Complexity and Geometry:

The complexity and geometry of the part significantly impact its design and tooling. Complex parts with intricate features, undercuts, thin walls, or varying thicknesses may require specialized tooling and mold designs. The part’s geometry must be carefully considered to ensure proper mold filling, cooling, ejection, and dimensional stability during the injection molding process.

4. Manufacturing Cost and Efficiency:

The design and tooling of injection molded parts are also influenced by manufacturing cost and efficiency considerations. Design features that reduce material usage, minimize cycle time, and optimize the use of the injection molding machine can help lower production costs. Efficient tooling designs, such as multi-cavity molds or family molds, can increase productivity and reduce per-part costs.

5. Moldability and Mold Design:

The moldability of the part, including factors like draft angles, wall thickness, and gate location, affects the mold design. The part should be designed to facilitate proper flow of molten plastic during injection, ensure uniform cooling, and allow for easy part ejection. The tooling design, such as the number of cavities, gate design, and cooling system, is influenced by the part’s moldability requirements.

6. Regulatory and Industry Standards:

Specific applications, especially in industries like automotive, aerospace, and medical, may have regulatory and industry standards that influence the design and tooling considerations. Compliance with these standards regarding materials, dimensions, safety, and performance requirements is essential and may impact the design choices and tooling specifications.

7. Assembly and Integration:

If the injection molded part needs to be assembled or integrated with other components or systems, the design and tooling must consider the assembly process and requirements. Features such as snap fits, interlocking mechanisms, or specific mating surfacescan be incorporated into the part’s design to facilitate efficient assembly and integration.

8. Aesthetics and Branding:

In consumer products and certain industries, the aesthetic appearance and branding of the part may be crucial. Design considerations such as surface finish, texture, color, and the inclusion of logos or branding elements may be important factors that influence the design and tooling decisions.

Overall, the design and tooling of injection molded parts for specific applications are influenced by a combination of functional requirements, material considerations, part complexity, manufacturing cost and efficiency, moldability, regulatory standards, assembly requirements, and aesthetic factors. It is essential to carefully consider these factors to achieve optimal part design and successful injection molding production.

Can you describe the various post-molding processes, such as assembly or secondary operations, for injection molded parts?

Post-molding processes play a crucial role in the production of injection molded parts. These processes include assembly and secondary operations that are performed after the initial molding stage. Here’s a detailed explanation of the various post-molding processes for injection molded parts:

1. Assembly:

Assembly involves joining multiple injection molded parts together to create a finished product or sub-assembly. The assembly process can include various techniques such as mechanical fastening (screws, clips, or snaps), adhesive bonding, ultrasonic welding, heat staking, or solvent welding. Assembly ensures that the individual molded parts are securely combined to achieve the desired functionality and structural integrity of the final product.

2. Surface Finishing:

Surface finishing processes are performed to enhance the appearance, texture, and functionality of injection molded parts. Common surface finishing techniques include painting, printing (such as pad printing or screen printing), hot stamping, laser etching, or applying specialized coatings. These processes can add decorative features, branding elements, or improve the surface properties of the parts, such as scratch resistance or UV protection.

3. Machining or Trimming:

In some cases, injection molded parts may require additional machining or trimming to achieve the desired final dimensions or remove excess material. This can involve processes such as CNC milling, drilling, reaming, or turning. Machining or trimming is often necessary when tight tolerances, specific geometries, or critical functional features cannot be achieved solely through the injection molding process.

4. Welding or Joining:

Welding or joining processes are used to fuse or bond injection molded parts together. Common welding techniques for plastic parts include ultrasonic welding, hot plate welding, vibration welding, or laser welding. These processes create strong and reliable joints between the molded parts, ensuring structural integrity and functionality in the final product.

5. Insertion of Inserts:

Insertion involves placing metal or plastic inserts into the mold cavity before the injection molding process. These inserts can provide additional strength, reinforce threaded connections, or serve as mounting points for other components. Inserts can be placed manually or using automated equipment, and they become permanently embedded in the molded parts during the molding process.

6. Overmolding or Two-Shot Molding:

Overmolding or two-shot molding processes allow for the creation of injection molded parts with multiple layers or materials. In overmolding, a second material is molded over a pre-existing substrate, providing enhanced functionality, aesthetics, or grip. Two-shot molding involves injecting two different materials into different sections of the mold to create a single part with multiple colors or materials. These processes enable the integration of multiple materials or components into a single injection molded part.

7. Deflashing or Deburring:

Deflashing or deburring processes involve removing excess flash or burrs that may be present on the molded parts after the injection molding process. Flash refers to the excess material that extends beyond the parting line of the mold, while burrs are small protrusions or rough edges caused by the mold features. Deflashing or deburring ensures that the molded parts have smooth edges and surfaces, improving their appearance, functionality, and safety.

8. Inspection and Quality Control:

Inspection and quality control processes are performed to ensure that the injection molded parts meet the required specifications and quality standards. This can involve visual inspection, dimensional measurement, functional testing, or other specialized testing methods. Inspection and quality control processes help identify any defects, inconsistencies, or deviations that may require rework or rejection of the parts, ensuring that only high-quality parts are used in the final product or assembly.

9. Packaging and Labeling:

Once the post-molding processes are complete, the injection molded parts are typically packaged and labeled for storage, transportation, or distribution. Packaging can include individual part packaging, bulk packaging, or custom packaging based on specific requirements. Labeling may involve adding product identification, barcodes, or instructions for proper handling or usage.

These post-molding processes are vital in achieving the desired functionality, appearance, and quality of injection molded parts. They enable the integration of multiple components, surface finishing, dimensional accuracy, and assembly of the final products or sub-assemblies.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Hot selling CHINAMFG 10 Ton Hydraulic Telescopic Boom Truck Mounted Crane  China Hot selling CHINAMFG 10 Ton Hydraulic Telescopic Boom Truck Mounted Crane
editor by CX 2023-12-28

10 Cheap made in China – replacement parts – in Taiz Yemen Ton Hydraulic Telescopic Boom Truck Mounted Crane with top quality

10  Cheap  made in China - replacement parts -  in Taiz Yemen  Ton Hydraulic Tel: +86~13083988828escopic Boom Truck Mounted Crane with top quality

We – EPG Team the biggest gearbox & motors , torque limiter couplings and gears manufacturing unit in China with 5 different branches. For far more details: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778083988828

ten Ton Hydraulic Tel: +86~13083988828escopic Growth Truck Mounted Crane
 

Our organization will provide you the substantial quality products with a low value, swift delivery,and specialist after-sale service.

10 Ton Hydraulic Tel: +86~13083988828escopic Boom Truck Mounted Crane
 

 Max Lifting Potential  Ton 10
 Max Lifting Second  Ton.m  20
 Recommend Energy  KW  25
 Hydraulic Technique Movement  L/min  40
 Hydraulic Program Strain  MPa  28
 Oil Tank Capacity  L  160
 Installation Room  mm  1200
 Self Fat  kg

3250

 Rotation Angle  ° 380

Truck Chassis
one)Scientific electrical power matching make sure a lot more strong energy transmission and a lot more energy-saving electricity programs.
2)Hydraulic steering system helps make composition simple & turning very easily.
3)Innovative chassis design and style and matching program tends to make the crane much more reputable efficiency and lower upkeep charges.
four)Different strengthened street tests to make certain that the chassis with far more trustworthy performance.
5)Clever torque limiter method, complete security for crane to make sure the procedure is more accurate, much more steady, more relaxed.

 

Hydraulic System
one)Tel: +86~13083988828escoping technique using traffic renewable technologies which substantially enhances the speed of outriggers.
2)Hydraulic parts these kinds of as balance valve, hydraulic lock are manufactured of substantial-good quality elements which can enhance dependability of method.
3)Hydraulic components’ rational layout will make servicing a lot more simple and hassle-free.

  • Basic safety 
    Bilateral can swap procedure, effortless observation raise, safer and much more humane.
    Higher good quality hydraulic components, quality assurance, powerful commonality, swap is hassle-free, security operation.
    With rotary influence unit, It is can properly defend the security of the vehicle.
  • Large-effectiveness
    Straight arm hanging cylinder with developed-in line technological innovation, synchronous growth, increase concise appearance, scale efficiency is large.
    Integral lifting construction, hydraulic program balance, substantial lifting efficiency.
  • Trusted
     Use at 3 floating bridge framework design and style, properly reduce the further tension of the chassis frame
    Counterparts for the 1st time utilizing dislocation leg composition, bearing potential is strong, leg span is the largest
    Match the complete machine adopts superior study and improvement technologies, sensible composition, reliable in overall performance.
  • Stabilization
    Utilizing higher energy steel, compact construction, light-weight weight, modest room for installation, mechanical overall performance is stable.
    Hexagon crane jib composition, good to neutral, bending capacity.
    ept for the 1st time by reduction gear turbine worm type slewing system, the rotary stability.

SHIPPING  & Package deal

WHY Pick US?

Encounter
10 several years experience of generation,revenue,analysis and growth in the area of unique vehicles.

Specialization
We can produce in accordance to your demand from customers, the content,the dimensions, the shade and the logo is optional for you.

Great quality
Has reliable technological innovation, innovative equipments Reliant quality and flexible modes of operation also have stringent high quality manage method and handed the iso9001-2008 and the 3c (china obligatory certification),with SGS,BV certifcate as well.

Chassis source
We have a very very good extended time period cooperation relationship with chassis manufacturer, This sort of as SINOTRUK, BEIBEN, FAW, FOTON, IVECO, SHACMAN, SHXIHU (WEST LAKE) DIS.I, CIMC, XIHU (WEST LAKE) DIS.FENG and so on.

OUR Services

(1) Far more than 300 personnel ,massive and superior production 
(2) Have specialist engineer,can offer you the greatest answers
(3) With trying to keep excellent relation with SINOTRUK, FOTON, ISUZU, DFAC, FOTON, SHACMAN chassis manufacturing facility.
(4) Construct stringent QC staff to guarantee the top quality
(5) Very own good sales crew, can provide heat stick to-up support.
(6) Spare Parts Source:
We have our possess spear elements departments,have robust creation and distribution ability. We can fulfill your demand within 2-7 times. We always do our best to solve the issues, and place our customers’ pursuits in the initial area. And We can Supply Spare Parts For Many Manufacturers, SucHOW IT Operates: MECHANICAL FRICTION TORQUE LIMITER Mach III friction torque limiters are usually engaged and transmit a mounted sum of torque from one component to yet another. They shield the travel and driven parts from harm in the function of a torque overload by slipping, so that the sum of torque transmitted from a single ingredient to the other does not exceed the pre-set quantity. Friction torque limiters are meant for momentary overload only and will proceed to slip right up until the resource of the torque overload is cleared, or the machine is shut down. For that reason, a signifies of detecting the torque overload have to be in area.h as SINOTRUK, BEIBEN, FAW, FOTON, IVECO, SHACMAN, SHXIHU (WEST LAKE) DIS.I, CIMC, XIHU (WEST LAKE) DIS.FENG and so on.

FAQ

one, How to buy the trailer truck from your company?
You can decide on the product from our website, also you can notify our income manger your certain specifications and we will advise the suited design to you. Right after confirming the design and price, we can indication the contract.
 
two,How to ensure item good quality?
Firstly,we handed the international good quality technique certification. Next, Made in China Group has carried out discipline certification for our factory. Lastly,You can en ept third get together folks or businesses to examine our items just before delivery.
 
3, How to check out your manufacturing facility? 
Soon after you arriving at China, you can fly to HangZhou airport. HangZhou airport is found in HangZhou City, ZheJiang Province. Our driver will satisfy you at HangZhou airport and consider you to our manufacturing unit by automobile.

WELCOME TO Make contact with US

If you are intrigued in any of building machinery for sale,make sure you truly feel totally free to get in touch with me. Also, welcome to China and visit our construction machinery factory for development machinery price or to discuss far more information.

HangZhou Chary Machinery CO., LTD
Get in touch with: 86~13083988828 138581177780 5328 9929
   

The use of authentic equipment manufacturer’s (OEM) element figures or logos , e.g. CASE® and John Deere® are for reference functions only and for indicating product use and compatibility. Our organization and the listed replacement components contained herein are not sponsored, accredited, or produced by the OEM.

10  Cheap  made in China - replacement parts -  in Taiz Yemen  Ton Hydraulic Tel: +86~13083988828escopic Boom Truck Mounted Crane with top quality

10  Cheap  made in China - replacement parts -  in Taiz Yemen  Ton Hydraulic Tel: +86~13083988828escopic Boom Truck Mounted Crane with top quality

10  Cheap  made in China - replacement parts -  in Taiz Yemen  Ton Hydraulic Tel: +86~13083988828escopic Boom Truck Mounted Crane with top quality

New near me made in China – replacement parts – in Detroit United States Mobile 16 Ton Hydraulic Arm Crane Telescopic Boom Truck Mounted Crane Price with top quality

New  near me  made in China - replacement parts -  in Detroit United States  Mobile 16 Ton Hydraulic Arm Crane Tel: +86~13083988828escopic Boom Truck Mounted Crane Price with top quality

We – EPG Group the most significant gearbox & motors , torque limiter couplings and gears manufacturing facility in China with 5 different branches. For more specifics: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778083988828

 

New mobile sixteen ton hydraulic arm crane telescopic boom truck mounted crane price 

Crane is a kind of equipment extensively employed in ports, workshop, electrical and constructional internet site. The crane is a common title of hoisting machine. Usually called crane is auto crane, crawler crane and tyre crane. WT Series The WT Series was designed to accommodate drinking water remedy programs and attributes a stainless steel module for exceptional safety in the severe doing work atmosphere.Crane is utilised in hoisting products,unexpected emergency rescue, lifting, machinery, the rescue.
Foremost functionality: the boom length in total extension is 32m, the overall performance leading in 5%. The quality capability is 40%, which make the equipment have excellent road adaptability.

The innovative jib program adopts embedded block, plug-in growth head and octagon jib, which has outstanding lifting performance and protected and reliable lifting function.

Undertake the new hydraulic motor with massive torque starting stage, ma ept the secondary lifting safer.

6 exclusive producing technologies ensure the high high quality.

The handle technique is optimized by 8 patents lifting, rotation, and luffing are simple and trustworthy.

Eight patent techniques ensure the clean, substantial efficiency and vitality conservation of the lifting, rotation, and luffing methods.

The unique stretch and retract technique stops the misoperation the stretch and retract of the growth is safer and far more trustworthy.

The torque limiter adopts vibrant Lcd screen, acknowledging the intelligence of the failure diagnosis. The precision is ahead of the industry.

The special stretch and retract approach avoids the bend of the core pipe and cylinder and the break of the growth triggered by misoperation, improving the basic safety of the operations.

6 exclusive systems source the good quality assurance, and make the items hold a high benefit.

The unique U growth and plug-in growth head make the load-carrying potential far more balanced, and elevate more smoothly.

The humanity style makes the taxi and control cab a lot more spacious, and straightforward to operate.

 

Truck Crane Parameter 

Model HW-Z16
Total Mass 16150KG
Dimension 10110*2350*3350mm
Max.lifting weight 16000KG
Max.lifting top 34m
Boom Size 42m
Main hook one load  16000KG
Main hook single elevating velocity 60M/MIN
Auxiliary hook one load 1600KG
Auxiliary hook one elevating speed 80M/MIN
Engine model 4108#
Power 88kw
Outrigger base 6.5*6.8m
Tires 900-twenty with spare tires
Driving pace 75km/h

Truck Crane Photos 

 Our business

 

The use of authentic tools manufacturer’s (OEM) portion quantities or trademarks , e.g. CASE® and John Deere® are for reference reasons only and for indicating product use and compatibility. Our organization and the outlined replacement elements contained herein are not sponsored, authorized, or made by the OEM.

New  near me  made in China - replacement parts -  in Detroit United States  Mobile 16 Ton Hydraulic Arm Crane Tel: +86~13083988828escopic Boom Truck Mounted Crane Price with top quality

New  near me  made in China - replacement parts -  in Detroit United States  Mobile 16 Ton Hydraulic Arm Crane Tel: +86~13083988828escopic Boom Truck Mounted Crane Price with top quality

New  near me  made in China - replacement parts -  in Detroit United States  Mobile 16 Ton Hydraulic Arm Crane Tel: +86~13083988828escopic Boom Truck Mounted Crane Price with top quality