Tag Archives: Coupling

China Standard Safety Clutch Coupling Utl50; Utl65; Utl89; Utl127; Utl178

Product Description

 Features;Ubet Machinery Torque Limiter

In case of sudden loading,  over loading or power off in transmission system, CHINAMFG Torque Limiter will slide automatically to protect the equipment. When the loading come back to normal,  the device will automatically work again without adjusting or setting. CHINAMFG Torque limiter operates through the spring mounted CHINAMFG the friction facing.  The sliding torque can be preset by adjusting the nut or bolt.  The torque limiter can be sued matching with the center parts clamped closely between tow friction faces, such as sprockets, gears, pulleys or flanges.

Comparing with one-time safety pin system, CHINAMFG Torque Limiter operates in line with appropriate spring loading and surface pressure to ensure the comparatively longer sliding time, recovering the presetting, and longer and continual protection as well.  CHINAMFG Torque Limiter is widely used in baking, bottling, food processing, machine tool, material handling, mining, packaging or printing industries. 

1.      precise overload protection
2.      easy manual adjustment
3.      factory torque setting available
4.      bored to fit for easy installation

 
Sizes and types:

Item No. Inner Diameter Outter Diameter Torque Range (Nm)
UTL50-1 8-14 50 2.94-9.8
UTL50-2 6.86-19.6
UTL65-1 10-22 65 6.86~/8822 0571 .44
UTL65-2 13.72-53.9
UTL89-1 17-25 89 19.6-74.48
UTL89-2 34.3-148.96
UTL127-1 20-42 127 46.08-209.72
UTL127-2 88.2-420.42
UTL178-1 30-64 178 115.64-569.38
UTL178-2 223.4-1087.8
Type 1 refers to 1 disc spring assembled; Type 2 refers to 2 disc springs assembled.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel 1045, S45c, C45e
Type: Not Gear
Single Nut Adjustment: The Washer Protect The Nut From Loosen
3 Bolts to Adjust: Adjusting Nut to Fix The Pilot Plate
Steel Parts: Colorful Zinc Coating
Steel Pats: Blackening
Customization:
Available

|

What is the impact of material selection on the performance and durability of injection molded parts?

The material selection for injection molded parts has a significant impact on their performance and durability. The choice of material influences various key factors, including mechanical properties, chemical resistance, thermal stability, dimensional stability, and overall part functionality. Here’s a detailed explanation of the impact of material selection on the performance and durability of injection molded parts:

Mechanical Properties:

The mechanical properties of the material directly affect the part’s strength, stiffness, impact resistance, and fatigue life. Different materials exhibit varying levels of tensile strength, flexural strength, modulus of elasticity, and elongation at break. The selection of a material with appropriate mechanical properties ensures that the injection molded part can withstand the applied forces, vibrations, and operational stresses without failure or deformation.

Chemical Resistance:

The material’s resistance to chemicals and solvents is crucial in applications where the part comes into contact with aggressive substances. Certain materials, such as engineering thermoplastics like ABS (Acrylonitrile Butadiene Styrene) or PEEK (Polyether Ether Ketone), exhibit excellent chemical resistance. Choosing a material with the appropriate chemical resistance ensures that the injection molded part maintains its integrity and functionality when exposed to specific chemicals or environments.

Thermal Stability:

The thermal stability of the material is essential in applications that involve exposure to high temperatures or thermal cycling. Different materials have varying melting points, glass transition temperatures, and heat deflection temperatures. Selecting a material with suitable thermal stability ensures that the injection molded part can withstand the anticipated temperature variations without dimensional changes, warping, or degradation of mechanical properties.

Dimensional Stability:

The dimensional stability of the material is critical in applications where precise tolerances and dimensional accuracy are required. Some materials, such as engineering thermoplastics or filled polymers, exhibit lower coefficients of thermal expansion, minimizing the part’s dimensional changes with temperature variations. Choosing a material with good dimensional stability helps ensure that the injection molded part maintains its shape, size, and critical dimensions over a wide range of operating temperatures.

Part Functionality:

The material selection directly impacts the functionality and performance of the injection molded part. Different materials offer unique properties that can be tailored to meet specific application requirements. For example, materials like polycarbonate (PC) or polypropylene (PP) offer excellent transparency, making them suitable for applications requiring optical clarity, while materials like polyamide (PA) or polyoxymethylene (POM) provide low friction and wear resistance, making them suitable for moving or sliding parts.

Cycle Time and Processability:

The material selection can also affect the cycle time and processability of injection molding. Different materials have different melt viscosities and flow characteristics, which influence the filling and cooling times during the molding process. Materials with good flow properties can fill complex mold geometries more easily, reducing the cycle time and improving productivity. It’s important to select a material that can be effectively processed using the available injection molding equipment and techniques.

Cost Considerations:

The material selection also impacts the overall cost of the injection molded part. Different materials have varying costs, and selecting the most suitable material involves considering factors such as material availability, tooling requirements, processing conditions, and the desired performance characteristics. Balancing the performance requirements with cost considerations is crucial in achieving an optimal material selection that meets the performance and durability requirements within the budget constraints.

Overall, material selection plays a critical role in determining the performance, durability, and functionality of injection molded parts. Careful consideration of mechanical properties, chemical resistance, thermal stability, dimensional stability, part functionality, cycle time, processability, and cost factors helps ensure that the chosen material meets the specific application requirements and delivers the desired performance and durability over the part’s intended service life.

Can you describe the various post-molding processes, such as assembly or secondary operations, for injection molded parts?

Post-molding processes play a crucial role in the production of injection molded parts. These processes include assembly and secondary operations that are performed after the initial molding stage. Here’s a detailed explanation of the various post-molding processes for injection molded parts:

1. Assembly:

Assembly involves joining multiple injection molded parts together to create a finished product or sub-assembly. The assembly process can include various techniques such as mechanical fastening (screws, clips, or snaps), adhesive bonding, ultrasonic welding, heat staking, or solvent welding. Assembly ensures that the individual molded parts are securely combined to achieve the desired functionality and structural integrity of the final product.

2. Surface Finishing:

Surface finishing processes are performed to enhance the appearance, texture, and functionality of injection molded parts. Common surface finishing techniques include painting, printing (such as pad printing or screen printing), hot stamping, laser etching, or applying specialized coatings. These processes can add decorative features, branding elements, or improve the surface properties of the parts, such as scratch resistance or UV protection.

3. Machining or Trimming:

In some cases, injection molded parts may require additional machining or trimming to achieve the desired final dimensions or remove excess material. This can involve processes such as CNC milling, drilling, reaming, or turning. Machining or trimming is often necessary when tight tolerances, specific geometries, or critical functional features cannot be achieved solely through the injection molding process.

4. Welding or Joining:

Welding or joining processes are used to fuse or bond injection molded parts together. Common welding techniques for plastic parts include ultrasonic welding, hot plate welding, vibration welding, or laser welding. These processes create strong and reliable joints between the molded parts, ensuring structural integrity and functionality in the final product.

5. Insertion of Inserts:

Insertion involves placing metal or plastic inserts into the mold cavity before the injection molding process. These inserts can provide additional strength, reinforce threaded connections, or serve as mounting points for other components. Inserts can be placed manually or using automated equipment, and they become permanently embedded in the molded parts during the molding process.

6. Overmolding or Two-Shot Molding:

Overmolding or two-shot molding processes allow for the creation of injection molded parts with multiple layers or materials. In overmolding, a second material is molded over a pre-existing substrate, providing enhanced functionality, aesthetics, or grip. Two-shot molding involves injecting two different materials into different sections of the mold to create a single part with multiple colors or materials. These processes enable the integration of multiple materials or components into a single injection molded part.

7. Deflashing or Deburring:

Deflashing or deburring processes involve removing excess flash or burrs that may be present on the molded parts after the injection molding process. Flash refers to the excess material that extends beyond the parting line of the mold, while burrs are small protrusions or rough edges caused by the mold features. Deflashing or deburring ensures that the molded parts have smooth edges and surfaces, improving their appearance, functionality, and safety.

8. Inspection and Quality Control:

Inspection and quality control processes are performed to ensure that the injection molded parts meet the required specifications and quality standards. This can involve visual inspection, dimensional measurement, functional testing, or other specialized testing methods. Inspection and quality control processes help identify any defects, inconsistencies, or deviations that may require rework or rejection of the parts, ensuring that only high-quality parts are used in the final product or assembly.

9. Packaging and Labeling:

Once the post-molding processes are complete, the injection molded parts are typically packaged and labeled for storage, transportation, or distribution. Packaging can include individual part packaging, bulk packaging, or custom packaging based on specific requirements. Labeling may involve adding product identification, barcodes, or instructions for proper handling or usage.

These post-molding processes are vital in achieving the desired functionality, appearance, and quality of injection molded parts. They enable the integration of multiple components, surface finishing, dimensional accuracy, and assembly of the final products or sub-assemblies.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China Standard Safety Clutch Coupling Utl50; Utl65; Utl89; Utl127; Utl178  China Standard Safety Clutch Coupling Utl50; Utl65; Utl89; Utl127; Utl178
editor by Dream 2024-05-02

China wholesaler Safety Clutch Coupling Utl50; Utl65; Utl89; Utl127; Utl178

Product Description

 Features;Ubet Machinery Torque Limiter

In case of sudden loading,  over loading or power off in transmission system, CHINAMFG Torque Limiter will slide automatically to protect the equipment. When the loading come back to normal,  the device will automatically work again without adjusting or setting. CHINAMFG Torque limiter operates through the spring mounted CHINAMFG the friction facing.  The sliding torque can be preset by adjusting the nut or bolt.  The torque limiter can be sued matching with the center parts clamped closely between tow friction faces, such as sprockets, gears, pulleys or flanges.

Comparing with one-time safety pin system, CHINAMFG Torque Limiter operates in line with appropriate spring loading and surface pressure to ensure the comparatively longer sliding time, recovering the presetting, and longer and continual protection as well.  CHINAMFG Torque Limiter is widely used in baking, bottling, food processing, machine tool, material handling, mining, packaging or printing industries. 

1.      precise overload protection
2.      easy manual adjustment
3.      factory torque setting available
4.      bored to fit for easy installation

 
Sizes and types:

Item No. Inner Diameter Outter Diameter Torque Range (Nm)
UTL50-1 8-14 50 2.94-9.8
UTL50-2 6.86-19.6
UTL65-1 10-22 65 6.86~/8822 0571 .44
UTL65-2 13.72-53.9
UTL89-1 17-25 89 19.6-74.48
UTL89-2 34.3-148.96
UTL127-1 20-42 127 46.08-209.72
UTL127-2 88.2-420.42
UTL178-1 30-64 178 115.64-569.38
UTL178-2 223.4-1087.8
Type 1 refers to 1 disc spring assembled; Type 2 refers to 2 disc springs assembled.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel 1045, S45c, C45e
Type: Not Gear
Single Nut Adjustment: The Washer Protect The Nut From Loosen
3 Bolts to Adjust: Adjusting Nut to Fix The Pilot Plate
Steel Parts: Colorful Zinc Coating
Steel Pats: Blackening
Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China wholesaler Safety Clutch Coupling Utl50; Utl65; Utl89; Utl127; Utl178  China wholesaler Safety Clutch Coupling Utl50; Utl65; Utl89; Utl127; Utl178
editor by Dream 2024-04-30

China Good quality Mighty Steel Torque Limiter Coupling Factory Supply torque limiter exporters

Product Description

Product Description
 

Product Description

As a protective device, torque limiter is used to limit the torque in the transmission system by
sliding when the torque excesses the pre-set value in sudden loading, over-loading or power off. Once the over-loading disappears, the device will back to normal automatically without any adjusting or setting. The device is applied to stop damaging the equipment and waste caused by shutdown. Torque limiter operates through the spring mounted CZPT the friction facing. The sliding torque can be pre-set by adjusting nut or bolt.
Torque limiter can be used matching with the centering parts clamped closely between 2 friction faces, such as sprockets, gears, pulleys or flanges, etc.

Features
1.  torque rang: 2.94-1087.8

2.  inner bore: 8-64

3.  outter diameter 50-178

4.  cooperate with sprockets, gears which clamping the 2 fricton facing

5.  pre-set the sliding torque according to the loading or the force of the equipment

6.  protect the equipment by sliding when shock loading, over loading or power off

7. application: baking, bottling, foodprocessing, machine tool, material handling or printing

8. easy manual installation and adjustment; torque pre-setting available;

Company Profile
ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.
About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than 70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in time.
-Strick quality control are apply in the whole production. 
we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export. MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CZPT customers in international sales.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Flame-Retardant, Anti-Static, Corrosion-Resistant, High Temperature-Resistance
Application: Textile Machinery, Conveyer Equipment, Packaging Machinery, Mining Equipment, Agricultural Machinery
Surface Treatment: Blackening
Material: Steel 1045, S45c, C45e
Color: Metallic Color
Spec: Follow Catalog or Customized
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

limiter torque

Choosing the Right Limiter Torque Control System

Whether you’re building a new machine or retrofitting an existing one, you’ll need a limiter torque control system. There are a number of different types available, and they can help you ensure the right torque is applied to your machine’s parts.

Pneumatic approach to limiter torque

Choosing the right torque limiter is essential to protect your machine and drive system from over-torque. There are several types of torque limiters, including mechanical, pneumatic, electromagnetic, and magnetic.
Mechanical torque limiters are a common type of torque limiter. They engage the driven side of the drive shaft by using a series of rollers or balls. They can be used in a wide variety of applications.
A pneumatic approach to limiter torque is used in applications that require maximum power during start-up. A torque limiter consists of an input shaft and an output shaft, which are connected by a pin. Once the torque limiter exceeds the torque limit, the pin fractures and the output shaft is disengaged. The pin can then be replaced to reconnect the shaft.
Torque limiters can also be used to control air volume. In pneumatic systems, air pressure is applied to a piston to force a ball detent device to engage. A microswitch in the case activates the limit switch when excessive loads are applied.
Electromagnetic torque limiters are similar to the pneumatic approach. The output shaft is a rotor. The inner shaft is a shaft with a small back iron that carries a PM field. The PM field generates torque, which is controlled by the angle between the magnets.
Electromagnetic torque limiters can be designed to operate at any temperature. They can also have a variable airgap to change the magnetic field. The MR fluid can also be used in magnetic field-based torque limiters to increase the density of torque.
Mechanical torque limiters are also used to limit transmission torque in robotic applications. They are available in a variety of sizes. They can also be integrated with an electric machine for mass savings.
Torque limiters can also be used as fail-safe devices. They act like fuses during overload. When the torque limiter is disengaged, the torque is transmitted to the drive system. This prevents damage to the drive system components.
Depending on your application, you can choose a torque limiter that can be adjusted to a low value. This allows you to easily control the torque limit for the start-up torque and can be adjusted to accommodate the machine’s cycle requirements.limiter torque

Permanent-magnet synchronous torque limiter

Whether you are looking to replace a damaged motor, or simply want to enhance performance in an application with high speed passing requirements, the application of a permanent-magnet synchronous torque limiter can be a great option. This type of torque limiter can help improve high speed passing performance, as well as provide a safety measure that prevents the engine from overheating.
Torque limiters come in a variety of formats. They can be static or dynamic, and can be reset manually or automatically. They can also be in the form of a hub, a sheave, or a pulley. Some can even mount a sprocket. The synchronous magnetic type uses two discs, with mating magnets on the face of each disc. The torque limiter can be adjusted by changing the gap between the magnets.
The synchronous magnetic type can also be used to transmit torque through a thin plastic wall. This type of limiter can also be set to a maximum value. It is also useful in applications with continuous running. It can be used in low power applications, such as robotic actuators.
A magnetic particle clutch is also a good example of a torque limiter. This type uses a current to create a magnetic field, a la the magnetic hysteresis. This magnetic field is then converted into d-q coordinates, which are viewed in the rotor reference frame. The magnetic particle clutch’s most notable feature is that the torque can be statically set or dynamically adjusted.
The most important function of a torque limiter is to prevent the engine from overheating or explosion. This can be achieved by setting the correct torque limit, or by having a system that will automatically reset the limit if the torque limit is exceeded. Some torque limiters even have a compression adjustment that can be used to set the appropriate limit.
Other types of torque limiters include a spring-loaded pawl-spring type, a ball detent type, and a synchronous magnetic type. A spring-loaded pawl-spring type can also be manually or automatically reset. A ball detent type may have several detent positions. A synchronous magnetic type may have more backlash than a mechanical type.limiter torque

Mach III friction torque limiter

Basically a torque limiter is a device that protects the transmission from damage when the torque is pushed beyond a certain limit. This is achieved by preventing the torque from transmitting into the gearbox. The limiter is a small device that can be mounted on any shaft. If you are looking for a simple yet effective way to protect your investment, then you should consider a torque limiter.
A friction torque limiter is a small device that transfers torque linearly in relation to the force applied to a set of discs. This is the simplest form of torque transfer and it is not difficult to install.
A torque limiter is typically a small device that is mounted on the end of a shaft or in the output shaft of a gearbox. This device can be configured in a number of different ways. The most common configurations involve mounting the device on the end of the shaft. It can be positioned to rotate in both the clockwise and counterclockwise directions.
A friction torque limiter is a small device that protects the transmission from damage when the torque is pushed beyond a certain limit. The limiter is a small device and it can be positioned to rotate in both the counterclockwise and clockwise directions. The limiter has a number of different mounting configurations, ranging from through-shaft to NEMA C-face. Regardless of the mounting method, the limiter is a small device that is easy to install.
The torque limiter is the best and cheapest way to protect the transmission from damage. In the event of an overload, the device will disengage and disconnect the barrel from the gearbox. You can also get an overload detection system that monitors the output shaft rotation and signals the control system to shut down the motor.
A torque limiter is a small device that can protect the transmission from damage when the torque is pumped beyond a certain limit. This is achieved through a combination of a drive hub and a set of discs. The discs are able to rotate in both the counterclockwise and the clockwise directions.

CZPT FT series torque limiter

FT CZPT is a torque limiter made of stainless steel. The FT is a full-trough concave curve, full-pour casting emitter, with a standard 6 inch width and 250 watts of output. The limitator is protected by corrosion and a white glaze. It is also tamper-resistant, and pre-shimmed and pre-tested. It is available in a variety of colors.
The FT CZPT torque limiter has a center member machined flat, with a sintered iron bushing that protects the hub of the limiter from slippage. The bolts are pre-shimmed at the factory, and they are pretested to ensure that the force is consistent. The spring cup bolts come in a variety of colors. A torque setting is pre-set in the factory, and the limiter is delivered ready to use. The FT CZPT torque limiter includes a chain coupling, and is available in a variety of torque limiters. If you have questions about this torque limiter, or are interested in ordering a limitator, you can contact the FT CZPT sales team.
China Good quality Mighty Steel Torque Limiter Coupling Factory Supply   torque limiter exportersChina Good quality Mighty Steel Torque Limiter Coupling Factory Supply   torque limiter exporters
editor by CX 2024-03-25

China wholesaler Hot Sale Mighty Torque Clutch Shaft to Shaft Tl250/Tl350 Torque Limiter Coupling

Product Description

Product Name Torque Limiter Coupling Place of origin China
Torque Range 2.9Nm to 1080Nm  Material steel 

  

Main Products:

Timing belt pulleys, timing bars, timing belt clamping plates.

Locking elements and shrink discs: could be alternative for Ringfeder, Sati, Chiaravalli, BEA, KBK, Tollok, etc.

V belt pulleys and taper lock bush.

Sprockets, idler, and plate wheels.

Gears and racks: spur gear, helical gear, bevel gear, worm gear, gear rack.

Shaft couplings: miniature coupling, curved tooth coupling, chain coupling, HRC coupling, NM coupling, FCL coupling, GE coupling, rigid and flexible coupling, jaw coupling, disc coupling, multi-beam coupling, universal joint, torque limiter, shaft collars.

Forging, Casting, Stamping Parts.
Other customized power transmission products and Machining Parts (OEM).

Advantage:

1. Factory directly supply ,  we  can continue to provide a stable supply                                        
2. Many years manufacture experience , top quality guaranteed by skilled workers, managing system and status of  facilities.
3. Competitive and reasonable price 
4. OEM service, we can do as your drawings or samples 
5. Quality Guarantee, 100% inspect before delivery
6. Good after-sale service, Our wokers are all professional and all can speak English. 
7. Timely delivery,  We have many long cooperation supplier. supply ONE-STOP service
8. High-tech CNC Machines
9. Independent Engineering Department

10.Kinds of surface treatment—Zinc Plating, Powder Coating, Anodizing, Chrome Plate, RoHs .etc .

 

      

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Anti-Static, Oil-Resistant, Cold-Resistant, Corrosion-Resistant, Heat-Resistant, Alkali-Resistant, Skid-Resistance, Wear-Resistant, Acid-Resistant, High Temperature-Resistance
Application: Conveyer Equipment
Surface Treatment: Customizable
Material: Stainless Steel
Color: Customizable
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

How does the injection molding process contribute to the production of high-precision parts?

The injection molding process is widely recognized for its ability to produce high-precision parts with consistent quality. Several factors contribute to the precision achieved through injection molding:

1. Tooling and Mold Design:

The design and construction of the injection mold play a crucial role in achieving high precision. The mold is typically made with precision machining techniques, ensuring accurate dimensions and tight tolerances. The mold design considers factors such as part shrinkage, cooling channels, gate location, and ejection mechanisms, all of which contribute to dimensional accuracy and part stability during the molding process.

2. Material Control:

Injection molding allows for precise control over the material used in the process. The molten plastic material is carefully measured and controlled, ensuring consistent material properties and reducing variations in the molded parts. This control over material parameters, such as melt temperature, viscosity, and fill rate, contributes to the production of high-precision parts with consistent dimensions and mechanical properties.

3. Injection Process Control:

The injection molding process involves injecting molten plastic into the mold cavity under high pressure. Advanced injection molding machines are equipped with precise control systems that regulate the injection speed, pressure, and time. These control systems ensure accurate and repeatable filling of the mold, minimizing variations in part dimensions and surface finish. The ability to finely tune and control these parameters contributes to the production of high-precision parts.

4. Cooling and Solidification:

Proper cooling and solidification of the injected plastic material are critical for achieving high precision. The cooling process is carefully controlled to ensure uniform cooling throughout the part and to minimize warping or distortion. Efficient cooling systems in the mold, such as cooling channels or conformal cooling, help maintain consistent temperatures and solidification rates, resulting in precise part dimensions and reduced internal stresses.

5. Automation and Robotics:

The use of automation and robotics in injection molding enhances precision and repeatability. Automated systems ensure consistent and precise handling of molds, inserts, and finished parts, reducing human errors and variations. Robots can perform tasks such as part removal, inspection, and assembly with high accuracy, contributing to the overall precision of the production process.

6. Process Monitoring and Quality Control:

Injection molding processes often incorporate advanced monitoring and quality control systems. These systems continuously monitor and analyze key process parameters, such as temperature, pressure, and cycle time, to detect any variations or deviations. Real-time feedback from these systems allows for adjustments and corrective actions, ensuring that the production remains within the desired tolerances and quality standards.

7. Post-Processing and Finishing:

After the injection molding process, post-processing and finishing techniques, such as trimming, deburring, and surface treatments, can further enhance the precision and aesthetics of the parts. These processes help remove any imperfections or excess material, ensuring that the final parts meet the specified dimensional and cosmetic requirements.

Collectively, the combination of precise tooling and mold design, material control, injection process control, cooling and solidification techniques, automation and robotics, process monitoring, and post-processing contribute to the production of high-precision parts through the injection molding process. The ability to consistently achieve tight tolerances, accurate dimensions, and excellent surface finish makes injection molding a preferred choice for applications that demand high precision.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China wholesaler Hot Sale Mighty Torque Clutch Shaft to Shaft Tl250/Tl350 Torque Limiter Coupling  China wholesaler Hot Sale Mighty Torque Clutch Shaft to Shaft Tl250/Tl350 Torque Limiter Coupling
editor by CX 2024-02-23

China Hot selling Torque Limiter Coupling Aodisi P63 Couplings for Vacuum Pumps Conveyors, Conveyor Drives, Coal Feeder Conveyor

Product Description

Product Description

The main engine and the material hopper are designed separately, and thus it is safe,

Easy and convenient to be operated.
The whole operation is controlled by MicroTrip computer. Equipped with an independent filter, which is very convenient to clean up dust. The equipped muffler reduces the noise in operation. Stainless steel material hopper
Is light in weight, durable and very convenient for cleaning the device.
The control box, being designed separately, is easy to bewell maintained. Auto-buzzer will give alarm while lacking material. Auto-protective device protects motor against overloading.

Model XTL-3.5HP XTL-5HP XTL-7.5HP XTL-10HP
Motor Type Induction Induction Induction Induction
Specification 3000w 3Φ 4000w 3Φ 5500w 3Φ 7500w 3Φ
Conveying Capacity 600kg/hr 700kg/hr 1100kg/hr 1500kg/hr
Static  wind pressure 2200mmAq 2200mmAq 2500mmAq 2800mmAq
Filter Φ 185x260H Φ 185x260H Φ 185x260H Φ 185x260H
Volume of Material Hopper 18L 18L 18L 18L
Inside   Diameter of Conveying Pipe Φ 50mm Φ 50mm Φ 50mm Φ 63.5mm
External Main  Body LWH 700×500
x950mm
700×500
x950mm
700×600
x950mm
750×650
x950mm
Material Hopper  LWH 430×440
x500mm
430×440
x500mm
430×440
x500mm
430×440
x500mm
Weight Main  Body 72kg 82kg 120kg 130kg
Material Hopper 7kg 8kg 8kg 8kg

Hot Product

Company Profile

Packaging & Shipping

FAQ

Q: About your factory ? 

A: Our engineers have 20 years of industry experience , committed to injection molding peripheral and refrigeration industry automatic integration of Equipment Research and development .
 

Q: About the product information and whether to support OEM ?

A:We accept OEM of this series of products , please contact me for more product data .

 

Q: About the warranty on the product ? 

A: Our professional engineers communicate with video and offer an one-year warranty (due to product quality issues) .

 

Q: About time of delivery and mode of delivery ? 

A: Delivery Period 10-20 days , support factory delivery and FOB .

 

Q: About the terms of payment ? 

A:Delivery by 100% payment before departure , T / T , L / C , Western Union and other international payment methods .

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Induction
Movement Mode: Vacuum Feeder
Usage: Plastic Materials
Capacity(t/h): 700kg/Hr
Motor Power(kw): 4kw
Overall Dimension: 700X500X950mm
Customization:
Available

|

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

What eco-friendly or sustainable practices are associated with injection molding processes and materials?

Eco-friendly and sustainable practices are increasingly important in the field of injection molding. Many advancements have been made to minimize the environmental impact of both the processes and materials used in injection molding. Here’s a detailed explanation of the eco-friendly and sustainable practices associated with injection molding processes and materials:

1. Material Selection:

The choice of materials can significantly impact the environmental footprint of injection molding. Selecting eco-friendly materials is a crucial practice. Some sustainable material options include biodegradable or compostable polymers, such as PLA or PHA, which can reduce the environmental impact of the end product. Additionally, using recycled or bio-based materials instead of virgin plastics can help to conserve resources and reduce waste.

2. Recycling:

Implementing recycling practices is an essential aspect of sustainable injection molding. Recycling involves collecting, processing, and reusing plastic waste generated during the injection molding process. Both post-industrial and post-consumer plastic waste can be recycled and incorporated into new products, reducing the demand for virgin materials and minimizing landfill waste.

3. Energy Efficiency:

Efficient energy usage is a key factor in sustainable injection molding. Optimizing the energy consumption of machines, heating and cooling systems, and auxiliary equipment can significantly reduce the carbon footprint of the manufacturing process. Employing energy-efficient technologies, such as servo-driven machines or advanced heating and cooling systems, can help achieve energy savings and lower environmental impact.

4. Process Optimization:

Process optimization is another sustainable practice in injection molding. By fine-tuning process parameters, optimizing cycle times, and reducing material waste, manufacturers can minimize resource consumption and improve overall process efficiency. Advanced process control systems, real-time monitoring, and automation technologies can assist in achieving these optimization goals.

5. Waste Reduction:

Efforts to reduce waste are integral to sustainable injection molding practices. Minimizing material waste through improved design, better material handling techniques, and efficient mold design can positively impact the environment. Furthermore, implementing lean manufacturing principles and adopting waste management strategies, such as regrinding scrap materials or reusing purging compounds, can contribute to waste reduction and resource conservation.

6. Clean Production:

Adopting clean production practices helps mitigate the environmental impact of injection molding. This includes reducing emissions, controlling air and water pollution, and implementing effective waste management systems. Employing pollution control technologies, such as filters and treatment systems, can help ensure that the manufacturing process operates in an environmentally responsible manner.

7. Life Cycle Assessment:

Conducting a life cycle assessment (LCA) of the injection molded products can provide insights into their overall environmental impact. LCA evaluates the environmental impact of a product throughout its entire life cycle, from raw material extraction to disposal. By considering factors such as material sourcing, production, use, and end-of-life options, manufacturers can identify areas for improvement and make informed decisions to reduce the environmental footprint of their products.

8. Collaboration and Certification:

Collaboration among stakeholders, including manufacturers, suppliers, and customers, is crucial for fostering sustainable practices in injection molding. Sharing knowledge, best practices, and sustainability initiatives can drive eco-friendly innovations. Additionally, obtaining certifications such as ISO 14001 (Environmental Management System) or partnering with organizations that promote sustainable manufacturing can demonstrate a commitment to environmental responsibility and sustainability.

9. Product Design for Sustainability:

Designing products with sustainability in mind is an important aspect of eco-friendly injection molding practices. By considering factors such as material selection, recyclability, energy efficiency, and end-of-life options during the design phase, manufacturers can create products that are environmentally responsible and promote a circular economy.

Implementing these eco-friendly and sustainable practices in injection molding processes and materials can help reduce the environmental impact of manufacturing, conserve resources, minimize waste, and contribute to a more sustainable future.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China Hot selling Torque Limiter Coupling Aodisi P63 Couplings for Vacuum Pumps Conveyors, Conveyor Drives, Coal Feeder Conveyor  China Hot selling Torque Limiter Coupling Aodisi P63 Couplings for Vacuum Pumps Conveyors, Conveyor Drives, Coal Feeder Conveyor
editor by CX 2024-01-09

China Professional Medical Orthopedic Torque Adapter Quick Coupling Handle, Torque Limiter Handle

Product Description

Product Description

Properties:Torque Handle Type:Handle
Place of Origin:ZheJiang , China Instrument classification:Class I
Certificate:CE/ISO 13485 OEM:Accepted
Transportation:FedEx. DHL. TNT. UPS Material:Medical Stainless Steel

 

 

XIETONG Group was found on 2004. Which have 2 separately products lines. One focus on all kinds of orthopedic implants. The other 1 focus on all kinds of orthopedic instrument. Products can be as our brands, and can be OEM as customers’ requirements. We have imported many high-precision processing equipment, such as Germany CHINAMFG 5 Axis Machine Tool Center, USA HASS 5 Axis Machine Tool Center, Japanese Citizen and Star 9 Axis Longitudinal Turning and Milling Center, Germany Schutte NC grinding machine, Swiss Rollomatic NC grinding machine, etc. And we have established a complete physical and chemical, mechanical laboratory. According to the ISO9001 and ISO 13485 requirements we established a perfect quality management system, and get the above certificates.

 

Packaging & Shipping

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Orthopedic
Material: Steel
Feature: Reusable
Certification: CE, FDA, ISO13485
Group: Adult
Transport Package: Carton
Customization:
Available

|

What factors influence the design and tooling of injection molded parts for specific applications?

Several factors play a crucial role in influencing the design and tooling of injection molded parts for specific applications. The following are key factors that need to be considered:

1. Functionality and Performance Requirements:

The intended functionality and performance requirements of the part heavily influence its design and tooling. Factors such as strength, durability, dimensional accuracy, chemical resistance, and temperature resistance are essential considerations. The part’s design must be optimized to meet these requirements while ensuring proper functionality and performance in its intended application.

2. Material Selection:

The choice of material for injection molding depends on the specific application and its requirements. Different materials have varying properties, such as strength, flexibility, heat resistance, chemical resistance, and electrical conductivity. The material selection influences the design and tooling considerations, as the part’s geometry and structure must be compatible with the selected material’s properties.

3. Part Complexity and Geometry:

The complexity and geometry of the part significantly impact its design and tooling. Complex parts with intricate features, undercuts, thin walls, or varying thicknesses may require specialized tooling and mold designs. The part’s geometry must be carefully considered to ensure proper mold filling, cooling, ejection, and dimensional stability during the injection molding process.

4. Manufacturing Cost and Efficiency:

The design and tooling of injection molded parts are also influenced by manufacturing cost and efficiency considerations. Design features that reduce material usage, minimize cycle time, and optimize the use of the injection molding machine can help lower production costs. Efficient tooling designs, such as multi-cavity molds or family molds, can increase productivity and reduce per-part costs.

5. Moldability and Mold Design:

The moldability of the part, including factors like draft angles, wall thickness, and gate location, affects the mold design. The part should be designed to facilitate proper flow of molten plastic during injection, ensure uniform cooling, and allow for easy part ejection. The tooling design, such as the number of cavities, gate design, and cooling system, is influenced by the part’s moldability requirements.

6. Regulatory and Industry Standards:

Specific applications, especially in industries like automotive, aerospace, and medical, may have regulatory and industry standards that influence the design and tooling considerations. Compliance with these standards regarding materials, dimensions, safety, and performance requirements is essential and may impact the design choices and tooling specifications.

7. Assembly and Integration:

If the injection molded part needs to be assembled or integrated with other components or systems, the design and tooling must consider the assembly process and requirements. Features such as snap fits, interlocking mechanisms, or specific mating surfacescan be incorporated into the part’s design to facilitate efficient assembly and integration.

8. Aesthetics and Branding:

In consumer products and certain industries, the aesthetic appearance and branding of the part may be crucial. Design considerations such as surface finish, texture, color, and the inclusion of logos or branding elements may be important factors that influence the design and tooling decisions.

Overall, the design and tooling of injection molded parts for specific applications are influenced by a combination of functional requirements, material considerations, part complexity, manufacturing cost and efficiency, moldability, regulatory standards, assembly requirements, and aesthetic factors. It is essential to carefully consider these factors to achieve optimal part design and successful injection molding production.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Professional Medical Orthopedic Torque Adapter Quick Coupling Handle, Torque Limiter Handle  China Professional Medical Orthopedic Torque Adapter Quick Coupling Handle, Torque Limiter Handle
editor by CX 2024-01-05

China Best Sales Best Price Mighty Torque Limiter Tl200 Tl250 Variably Adjustable Torque Limiter Coupling

Product Description

Product Name Torque Limiter Coupling Place of origin China
Torque Range 2.9Nm to 1080Nm  Material steel 

  

Main Products:

Timing belt pulleys, timing bars, timing belt clamping plates.

Locking elements and shrink discs: could be alternative for Ringfeder, Sati, Chiaravalli, BEA, KBK, Tollok, etc.

V belt pulleys and taper lock bush.

Sprockets, idler, and plate wheels.

Gears and racks: spur gear, helical gear, bevel gear, worm gear, gear rack.

Shaft couplings: miniature coupling, curved tooth coupling, chain coupling, HRC coupling, NM coupling, FCL coupling, GE coupling, rigid and flexible coupling, jaw coupling, disc coupling, multi-beam coupling, universal joint, torque limiter, shaft collars.

Forging, Casting, Stamping Parts.
Other customized power transmission products and Machining Parts (OEM).

Advantage:

1. Factory directly supply ,  we  can continue to provide a stable supply                                        
2. Many years manufacture experience , top quality guaranteed by skilled workers, managing system and status of  facilities.
3. Competitive and reasonable price 
4. OEM service, we can do as your drawings or samples 
5. Quality Guarantee, 100% inspect before delivery
6. Good after-sale service, Our wokers are all professional and all can speak English. 
7. Timely delivery,  We have many long cooperation supplier. supply ONE-STOP service
8. High-tech CNC Machines
9. Independent Engineering Department

10.Kinds of surface treatment—Zinc Plating, Powder Coating, Anodizing, Chrome Plate, RoHs .etc .

 

      
 

Standard or Nonstandard: Standard
Feature: Anti-Static, Oil-Resistant, Cold-Resistant, Corrosion-Resistant, Heat-Resistant, Alkali-Resistant, Skid-Resistance, Wear-Resistant, Acid-Resistant, High Temperature-Resistance
Application: Conveyer Equipment
Surface Treatment: Customizable
Material: Stainless Steel
Color: Customizable
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China Best Sales Best Price Mighty Torque Limiter Tl200 Tl250 Variably Adjustable Torque Limiter Coupling  China Best Sales Best Price Mighty Torque Limiter Tl200 Tl250 Variably Adjustable Torque Limiter Coupling
editor by CX 2023-12-08

China Professional Surgical Instrument Orthopedic Trauma Medical Quick Coupling Torque Limiter Torque Handle for Surgery

Product Description

Product Description

 

Properties:Implant Materials & Artificial Organs Type:Orthopedic Instruments
Place of Origin:ZheJiang , China Instrument classification:Class I
Certificate:CE/ISO13485 OEM:Accepted
Transportation:FedEx. DHL. TNT. UPS Material:Stainless steel
Usage:for Orthopedic Surgery  

Detailed Photos

 

 

Product details

For More Products

Packing&Delivery

XIETONG Group was found on 2004. Which have 2 separately products lines. One focus on all kinds of orthopedic implants. The other 1 focus on all kinds of orthopedic instrument. Products can be as our brands, and can be OEM as customers’ requirements. We have imported many high-precision processing equipment, such as Germany CHINAMFG 5 Axis Machine Tool Center, USA HASS 5 Axis Machine Tool Center, Japanese Citizen and Star 9 Axis Longitudinal Turning and Milling Center, Germany Schutte NC grinding machine, Swiss Rollomatic NC grinding machine, etc. And we have established a complete physical and chemical, mechanical laboratory. According to the ISO9001 and ISO 13485 requirements we established a perfect quality management system, and get the above certificates.

FAQ

 

 

Q1: Would you please give some information on shipping mode and charges?

 

A: Normally we send through courier like DHL, FEDEX, UPS, TNT etc or post CHINAMFG request from clients.

Q2: Do you haveISO9001, ISO 13485, CE approvals?

 

A: Yes,we have.

Q3: What is the minimum order that we can place? 

 

A: We expect your minimum orders to be least at US$500. However, we understand that customers need to place smaller samples orders in the beginning in order to test market our products. 

Q4:Can I buy products not shown but similar to your catalogue?

 

A: Of course you can, just send us pictures or samples. But this takes a little longer time for delivery.

Customized: Customized
Certification: ISO, CE
Condition: New
Usage: Fracture Fixation
Type: External Fixator
Properties: Orthopedic Surgical Instruments
Samples:
US$ 350/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

Can you provide guidance on the selection of injection molded materials based on application requirements?

Yes, I can provide guidance on the selection of injection molded materials based on application requirements. The choice of material for injection molding plays a critical role in determining the performance, durability, and functionality of the molded parts. Here’s a detailed explanation of the factors to consider and the guidance for selecting the appropriate material:

1. Mechanical Properties:

Consider the mechanical properties required for the application, such as strength, stiffness, impact resistance, and wear resistance. Different materials have varying mechanical characteristics, and selecting a material with suitable properties is crucial. For example, engineering thermoplastics like ABS, PC, or nylon offer high strength and impact resistance, while materials like PEEK or ULTEM provide exceptional mechanical performance at elevated temperatures.

2. Chemical Resistance:

If the part will be exposed to chemicals, consider the chemical resistance of the material. Some materials, like PVC or PTFE, exhibit excellent resistance to a wide range of chemicals, while others may be susceptible to degradation or swelling. Ensure that the selected material can withstand the specific chemicals it will encounter in the application environment.

3. Thermal Properties:

Evaluate the operating temperature range of the application and choose a material with suitable thermal properties. Materials like PPS, PEEK, or LCP offer excellent heat resistance, while others may have limited temperature capabilities. Consider factors such as the maximum temperature, thermal stability, coefficient of thermal expansion, and heat transfer requirements of the part.

4. Electrical Properties:

For electrical or electronic applications, consider the electrical properties of the material. Materials like PBT or PPS offer good electrical insulation properties, while others may have conductive or dissipative characteristics. Determine the required dielectric strength, electrical conductivity, surface resistivity, and other relevant electrical properties for the application.

5. Environmental Conditions:

Assess the environmental conditions the part will be exposed to, such as humidity, UV exposure, outdoor weathering, or extreme temperatures. Some materials, like ASA or HDPE, have excellent weatherability and UV resistance, while others may degrade or become brittle under harsh conditions. Choose a material that can withstand the specific environmental factors to ensure long-term performance and durability.

6. Regulatory Compliance:

Consider any regulatory requirements or industry standards that the material must meet. Certain applications, such as those in the medical or food industries, may require materials that are FDA-approved or comply with specific certifications. Ensure that the selected material meets the necessary regulatory and safety standards for the intended application.

7. Cost Considerations:

Evaluate the cost implications associated with the material selection. Different materials have varying costs, and the material choice should align with the project budget. Consider not only the material cost per unit but also factors like tooling expenses, production efficiency, and the overall lifecycle cost of the part.

8. Material Availability and Processing:

Check the availability of the material and consider its processability in injection molding. Ensure that the material is readily available from suppliers and suitable for the specific injection molding process parameters, such as melt flow rate, moldability, and compatibility with the chosen molding equipment.

9. Material Testing and Validation:

Perform material testing and validation to ensure that the selected material meets the required specifications and performance criteria. Conduct mechanical, thermal, chemical, and electrical tests to verify the material’s properties and behavior under application-specific conditions.

Consider consulting with material suppliers, engineers, or experts in injection molding to get further guidance and recommendations based on the specific application requirements. They can provide valuable insights into material selection based on their expertise and knowledge of industry standards and best practices.

By carefully considering these factors and guidance, you can select the most appropriate material for injection molding that meets the specific application requirements, ensuring optimal performance, durability, and functionality of the molded parts.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Professional Surgical Instrument Orthopedic Trauma Medical Quick Coupling Torque Limiter Torque Handle for Surgery  China Professional Surgical Instrument Orthopedic Trauma Medical Quick Coupling Torque Limiter Torque Handle for Surgery
editor by CX 2023-11-27

China Good quality Steel Torque Limiter Coupling Tl200 Tl250 Tl350 Tl500 Tl700 with Hot selling

Product Description

Product Description

 

TORQUE LIMITER
 

Overload protection device of torque limiter clutches and brakes are Limiting the torque in the transmission system by sliding when the torque excesses the pre-set value in sudden loading, over-loading or power off. Once the over-loading disappears, the device will be back to normal automation without any adjusting or setting.

Model number  TL200-1 / TL200-2 / TL250-1 / TL250-2 / TL350-1 / TL350-2 / TL500-1 / TL500-2 /  TL700-1 / TL700-2
Torque 2.9-1080 Nm
O.D. of bushing 30-105 mm
Pilot bore 8-30 mm
Type Friction type
Mass 0.25-9.44 kg

 

Catalogue

 

FAQ

Q1: Are you trading company or manufacturer ?
A: We are factory.
 

Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days.
2.Production Lead-times: 30-45 days after order confirmed.

Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.

 

 

Standard Or Nonstandard: Standard
Structure: Flexible
Material: Cast Iron
Type 1: Tl200-1
Type 2: Tl200-2
Type 3: Tl250-1
Customization:
Available

|

Customized Request

limiter torque

CZPT Torque Limiter Products

Whether you’re looking for a magnetic torque limiter or a permanent-magnet synchronous limiter, CZPT(r) has a torque limiter solution for you. In addition to these products, we also offer Roller-detent and Challenge torque limiters.

Over-torque limiters

During heavy duty high cycle operations, it’s critical to have the proper equipment for maintaining torque levels. Having the right torque limiters can protect your machine from damage and help to reduce the frequency of downtime and cost of repair.
Torque limiters work to prevent the buildup of rotational energy, which can cause mechanical overloads. The torque limiter system detects the overload and disconnects the drive from the driven components. When the torque level drops below the preset level, the device reengages.
Torque limiters are widely used in industrial and assembly line applications. They are used in manufacturing equipment such as industrial robots and printing and converting machines. They are also used in conveyors and woodworking machines.
There are many types of torque limiters available. The most common are mechanical and hydraulic. The mechanical torque limiters can be installed in a single point or multiple points in the machine. Hydraulic torque limiters are a compact option for accurate torque overload release. They also allow users to set a precise disengagement torque value.
Typically, these devices are adjustable with a single screw. For offset mounted systems, an external bearing may be required. Most quality torque limiters include a bearing between the base of the clutch and the output flange.
Mechanical torque limiters are available in a variety of sizes and designs. They can be used in virtually any application. They provide an integrated mechanical and electrical design.

Magnetic torque limiters

Using Magnetic Torque Limiters will increase the reliability and durability of your equipment. They also help prevent catastrophic failure, which is essential for preventing downtime. They are used in a wide range of applications, including printing and converting machines, woodworking machines, conveyors, and many more.
They are designed to disengage from the driven system when the torque load exceeds the design limit. This protects rotating equipment and machinery from torsional strain and other hazards. They are also designed to provide precise overload protection. Using a torque limiter can protect equipment through its entire life cycle. It may prevent a mechanism from failing or even prevent a workplace accident.
A torque limiter is typically packaged as a shaft coupling. It is also available in other forms, such as friction-plate couplings and magnetic particle couplings. It is also available in many different sizes. It is important to choose a torque limiter that is right for your needs. The design of the torque limiter must match the type of torque load generated.
They are used in a variety of applications, including speed and torque sensors, acceleration sensors, position sensors, and more. They also can be found in various counters, tachogenerators, scales, and measuring devices.
Magnetic torque limiters are lightweight, require no maintenance, and don’t suffer wear and fatigue. They also can be used at any temperature. They have a quick response time, and they can reduce the transmission of torsional vibrations.

Permanent-magnet synchronous torque limiters

Various types of torque limiters are available in the market. These include friction torque limiters, magnetic particle clutch torque limiters, and spring-loaded pawl-spring torque limiters. These devices are used to limit the torque transmitted from an input shaft to an output shaft. These devices reduce the force experienced by the drive train components and thus enhance the reliability of electromechanical actuators. They protect expensive components from damage and physical injury.
In a magnetic particle clutch torque limiter, a magnetic field is generated from current. This field is transmitted to an output shaft through a physical barrier or air gap between the magnetic field lines. Magnetic particles in the assembly lock into chains along the field lines. The torque generated is statically or dynamically set. The torque is proportional to the current passing through the windings.
Friction torque limiters are used in various applications such as robotics. These devices have a radial and axial design. They also utilize sensors to prevent overload. These devices are also used as shaft-to-shaft couplings. The torque density is good and the devices are easy to operate.
Permanent-magnet synchronous torque limiters are another type of torque limiters. This type uses twin discs with mated magnets on their faces. These devices are fast acting and provide quick response. They can also have backlash.
In a permanent-magnet synchronous torque limiter, the magnetic field is generated from an excitation source. This field then interacts with a PM field to generate torque.limiter torque

Roller-detent torque limiters

Whether you’re working on a manufacturing or processing line, it’s important to be aware of the various types of torque limiters and how they work. They can protect your equipment from overload and damage, and prevent physical injury to personnel. These devices can also be used in industrial robots, assembly lines, printing and converting machines, and conveyors.
Torque limiters can be mechanical, pneumatic, or electronic. Some systems have a single-position device, while others have a flexible coupling model that allows small parallel offsets and angular misalignments. Some systems also offer random reset devices.
Torque limiters are designed to protect expensive components from overloaded conditions. Modern machines have a predictable motion and torque, but unexpected forces can exceed their design limits. They can also eliminate physical injury by isolating driving and driven equipment from each other when overload occurs.
Mechanical torque limiters are available in a wide range of sizes and are designed for use in virtually any application. They are also backlash-free and offer superior repeat accuracy. They are ideal for processing different materials, and are suitable for applications such as woodworking.
Electronic torque limiters are less expensive than mechanical devices, and offer a more reliable control mechanism. They can apply pressure to thrust flanges and control the volume of air in the air chamber. They are commonly used in sheet metal processing equipment, printing and converting machines, and industrial robots.

CZPT(r) Tolerance Ring

CZPT(r) Tolerance Ring is a custom-designed component that is used to transfer torque and axial force between mating components. The component can be used as a slip clutch and as a force limiter.
The tolerance ring may be made from metal, such as nickel-copper, spring steel, carbon steel, or copper-beryllium. The material may be heat-treated to provide the desired hardness and durability. The tolerance ring is typically curved to facilitate assembly. The tolerance ring can also be manufactured as an annular band.
The tolerance ring includes a generally cylindrical body. The body may be formed with a slit down the side. The body may also be constructed with one or more rows of projections. A tolerance ring is typically located between the inner component and the outer component. The tolerance ring transfers torque between the inner and outer components.
A tolerance ring may have an apex radius of no less than 1.01 RB. The base radius is measured perpendicularly from the ring’s central axis to the outer surface of the apex.
A tolerance ring may be arranged in a centered or piloted configuration. A centered configuration requires grooves in the bearing housing. A piloted configuration uses a step instead of a groove.
In a two-layer tolerance ring configuration, the first layer may include a plurality of radially extending projections. The second layer may include a smooth, regular surface. The two layers may overlap in some locations. When the layers overlap, the second layer may act as a sleeve around the inner component. The second layer may also act as a diffuser for transmitted force.limiter torque

Challenge torque limiters

Designed to optimize torque and speed in drive systems, the Challenge torque limiter is available in torque ranges of three to 1090 Nm. Using an array of spring loaded friction discs, Challenge torque limiters are capable of adjusting force to the tune of a small percentage of the total torque. Whether you need a pilot bored unit or a completely custom machined model, Challenge has the expertise and resources to ensure your requirements are met.
In fact, the company has the largest line of torque limiters in the world. These units are capable of supporting shaft diameters ranging from 9mm to 64mm. They are also able to provide reliable overload protection. Having a torque limiter mounted in your machine is the smartest decision you can make.
The company also offers a range of torque limiters that are specifically engineered to address the needs of industry sectors such as automotive, aerospace, and medical. Aside from torque limiters, the company also offers other product solutions such as servo motors, actuators and cylinders, and power transmission systems. The patented R+W torque limiter has a proprietary patented operational principle that can be adjusted to match the application and meet its intended use. They are also available in a variety of torque ranges, sizes, and capacities. They also offer a comprehensive warranty and service program. They have a plethora of applications in industrial robots, conveyor systems, assembly lines, and even printing and converting equipment.
China Good quality Steel Torque Limiter Coupling Tl200 Tl250 Tl350 Tl500 Tl700   with Hot sellingChina Good quality Steel Torque Limiter Coupling Tl200 Tl250 Tl350 Tl500 Tl700   with Hot selling
editor by CX 2023-11-24

China wholesaler Positive Torque Limiters torque limiter coupling

Product Description

CZPT Keyless Locking Devices are used in rotating machinery,  producing clamping pressure between surface of locking device and shaft to create adjustable and releasable mechanical connection,  so as to clamp gears,  pulleys and other components to a shaft without threads or keys. 

Raw materials available in:
l   Steel C45E,
l   Steel 42CrMo4V
l   Stainless Steel AISI431,
l  Stainless Steel AISI304
 
Features:
1. Connect hubs solidly to shafts
2. Easy installation and disassembly
3. High torque transmission
4. Long lifetime and easy maintenance
5. Low notching effect
6. Reduction of wear and tear of expensive machine components
 
Ubet Machinery provides types of Keyless Locking Devices,  which are interchangeable with many European and American brands. High quality always comes the first.

Ubet Keyless Locking Device KLD-1 Medium torque, not self-centering, Medium surface pressures, No axial hub movement, flexible use, machining tolerance shaft H8, hub H8; socket head locking screw DIN912-12.9. The most popular type of all KLD Locking Device, CZPT Connection; the slotted design of the double tapered rings enables relatively high mounting tolerance, The large taper angles are not self-locking and facilitate the release of the connection.

KLD-1 Interchange with Z2,BIKON 4000,BEA BK40,BONFIX CCE2000,Challenge 01,Chiaravalli RCK40,CONEX  A, Fenlock FLK200,ITALBLOCK CN210,KTR100,KINLOK LOK30,KBS40,KANA 200,MAV 2005,POGGI CAL-A,RFN7012,Ringspann RLK200,Ringblok 1120,SIT 1,SATI KLGG,TOLLOK TLK200,Tsubaki AS,TAS3571,V-Blok VK400,Walther CZPT MLC 1000,Fenner Drive B-Loc B400,LoveJoy SLD1500,  FX10,OKBS40,DRIVELOCK40  

Ubet Keyless Locking Assembly KLD-2 Medium torque, self-centering, small cross section, machining tolerance shaft H8, hub H8; Socket head locking screw DIN912-12.9
Self-centering with excellent concentricity; the small outer diameter is space-saving and suitable for small wheel diameters; the spacer ring between the outer flange and the hub maintains the fitting position in the axial direction to enable exact positioning without a shaft collar; the push-off threads in the outer flanges are used for dismantling.
 
KLD-2 Interchange with Z11,BIKON 8000,BEA BK80,BONFIX CCE1000,Challenge 02,Chiaravalli RCK80,CONEX  B,7110 ECOLOC, Fenlock FLK110,GERWAH PSV2571.1,ITALBLOCK CN55,KTR250,KINLOK LOK10,KBS80,MAV 5061,POGGI CAL-B,RFN7110,Ringspann RLK110,Ringblok 1100,SIT 3,SATI KLCC,TOLLOK TLK110,Tsubaki TF,V-Blok VB800B,Walther CZPT MLC3000,Fenner Drive B-Loc B800,LoveJoy SLD1900, FX20,OKBS80,DRIVELOCK80

Ubet Locking Elements KLD-3
Low torque, Medium surface pressure, Taper rings only, Low axial and radial dimensions
This clamping set is self-centering with excellent concentricity. The extremely small outer diameter is space-saving and suitable for small wheel diameters. The spacer ring between the outer flange and the hub maintains the fitting position in the axial direction to enable exact positioning without a shaft collar. The push-off threads in the outer flanges are used for dismantling.
 
 KLD-3 Interchange with Z1,BIKON 5000,BEA BK50,BONFIX CCE3000,Challenge 03 Chiaravalli RCK50,CONEX  C,Fenlock FLK300,ITALBLOCK CN31,KRT150,KINLOK LOK80,KBS50,KANA 300,MAV 3003,POGGI CAL-C,RFN8006,Ringspann RLK300,Ringblok 1060,SIT 2,SATI KLNN,TOLLOK TLK300,Tsubaki EL, ,Walther CZPT MLC 2000,Fenner Drive B-Loc B112,LoveJoy SLD350, FX30,OKBS50,DRIVELOCK50
 
Ubet Mechanical Locking Device KLD-4
High torque, self-centering, medium surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
KLD-4 Interchange with Z3,BIKON 7000A,BEA BK70,BONFIX CCE4000,Challenge 04,Chiaravalli RCK70,CONEX  D,7004 ECOLOC, Fenlock FLK130,GERWAH PSV2007,ITALBLOCK CN54/N,KTR200,KINLOK LOK20A,KBS70,MAV 6901,POGGI CAL-D,RFN7013.0,Ringspann RLK130,Ringblok 1300.1,SIT 5A,SATI KLDA,TOLLOK TLK130,V-Blok VK700, FX40,OKBS70,DRIVELOCK70
 
Ubet Shaft Hub Connection KLD-5
Medium torque, reduced length, medium self-centering, High surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
Suitable for narrow, disk-shaped wheel hubs. Self-centering and self-locking in the clamping state.
 
KLD-5 Interchange with Z3B,BIKON 1003,BEA BK13,BONFIX CCE4100,Challenge 05,Chiaravalli RCK13,CONEX  DS,7003 ECOLOC, Fenlock FLK132,GERWAH PSV2006,KTR203,KBS13,KANA 201,MAV 1062,POGGI CAL-DS,RFN7013.0, Ringspann RLK132,Ringblok 1710,SIT 6,SATI KLAA,TOLLOK TLK132,TAS3003,       V-Blok VK160,Walther CZPT MLC 5006,LoveJoy SLD1750, FX41, OKBS13, DRIVELOCK13.
 
Ubet Shaft Locking Device KLD-6
Medium torque, self-centering, Low surface pressure, No axial hub movement, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
 KLD-6 Interchange with Z13,BIKON 7000B,BEA BK71,BONFIX CCE4500,Challenge 06,Chiaravalli RCK71,CONEX  E,7007 ECOLOC, Fenlock FLK131,GERWAH PSV2007.3,ITALBLOCK CN54/S,KTR201,KINLOK LOK20B,KBS71,MAV 6902,POGGI CAL-E,RFN7013.1,Ringspann RLK131,Ringblok 1300.2,SIT 5B,SATI KLDB,TOLLOK TLK131,Tsubaki KE,V-Blok VK700.1,Walther CZPT MLC5000B, FX50,OKBS71,DRIVELOCK71
 
Ubet Clamping Power Lock KLD-7
Medium torque, reduced length, High surface pressure, No axial hub movement, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9; Simultaneous Connection of Chain Sprocket
 
 KLD-7 Interchange with Z8,BIKON 1006,BEA BK16,BONFIX CCE4600,Challenge 07,Chiaravalli RCK16,CONEX  ES,7006 ECOLOC,Fenlock FLK133,GERWAH PSV2006.3,ITALBLOCK CN9/4,KTR206,KBS16,KANA 201,MAV 1061,POGGI CAL-ES,RFN7013.1,Ringspann RLK133,Ringblok 1720,SATI KLAB,TOLLOK TLK133,Tsubaki AE,TAS3006,V-Blok VK130,Walther CZPT MLC 5007,LoveJoy SLD1750, FX51,OKBS16,DRIVELOCK16
 
Ubet Shrink Disc KLD-14
High torque, No axial hub movement, High speed application, preferred solution for coupling hub and hollow shaft gearbox, DIN931-10.9 screw; Smart-Lock Shrink Disc, Narrow Hub Connection for sprockets, connect hollow and CZPT shafts frictionally and backlash-free.
 
KLD-14 Interchange with Z7B,BEA BK19,BONFIX CCE8000,Challenge 14,Chiaravalli RCK19,CONEX  SD, Fenlock FLK603, ,KTR603,KBS19,MAV 2008,RFN4071,Ringspann RLK603,Ringblok 2200,SATI KLDD,TOLLOK TLK603, Tsubaki SL, ,Walther CZPT MLC 9050,Fenner Drive B-Loc SD10,LoveJoy SLD900, FX190,OKBS19,DRIVELOCK19
 
Ubet Locking Assembly KLD-15
High torque, self-centering, Low-medium surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
KLD-15 Interchange with BEA BK15, Challenge 15,Chiaravalli RCK15,CONEX  EP, Fenlock FLK134,KBS15 ,MAV 3061,Ringspann RLK134,SATI KLBB,TOLLOK TLK134,  FX52,DRIVELOCK15
 
 
Ubet Locking Bushes KLD-16
Medium torque, Reduced length, Medium self-centering, High surface pressure, machining tolerance shaft H8, hub H8; socket head Locking screw DIN912-12.9
 
 KLD-16 Interchange with BONFIX CCE4900,Challenge 16,CONEX  L,KTR225,KBS52,SATI KLHH, FX120
 
 
Ubet Ball Bearing Adapter Sleeve KLD-17
Low torque, Short Length, Not self-centering, Low surface pressure, machining tolerance shaft H8, hub H8 
 KLD-17 Interchange with BEA BK25, Challenge 17, KBS51, SATI KLFC, FX80
 
Ubet Bearing Adapter Sleeve  KLD-17.1
Low-medium torque, self-centering, low surface pressure, machining tolerance shaft H8, hub H8
 
KLD-17.1 Interchange with Z19B, BEA BK26,Challenge 21,Chiaravalli RCK55, Fenlock FLK250,KTR125,KBS55, POGGI CAL-L,Ringspann RLK250,Ringblok 1500, SATI KLFF,TOLLOK TLK250
 
Ubet Shaft Clamping Collar KLD-18
Low-medium torque, Short Length, self-centering, low surface pressure, machining tolerance shaft H8, hub H8, socket head Locking screw DIN912-12.9
This clamping set is self-centering and suitable for extremely small shaft diameters.     It transfers average to large torques
 
KLD-18   Interchange with BEA BK61,Chiaravalli RCK61,7002 ECOLOC ,GERWAH PSV2061,KTR105,KBS61,MAV 7903,SATI KLSS, Walther CZPT MLC 5050, FX350,OKBS61,DRIVELOCK61
 
Ubet Clamping Device KLD-19
very high torque, self-centering, medium surface pressure, no axial hub movement, machining tolerance shaft H8, hub H8,  socket head Locking screw DIN912-12.9
This clamping set is self-centering with excellent concentricity. The extremely small outer diameter is space-saving and suitable for small wheel diameters. The spacer ring between the outer flange and the hub maintains the fitting position in the axial direction to enable exact positioning without a shaft collar.
 
KLD-19 Interchange with Z12A,BIKON 1012,BEA BK11,BONFIX CCE9500,Challenge 19,Chiaravalli RCK11,CONEX  F,7005 ECOLOC,Fenlock FLK400,GERWAH PSV2005,ITALBLOCK CN911,KTR400,KINLOK LOK40,KBS11,MAV 4061,POGGI CAL-F,RFN7015,Ringspann RLK400,Ringblok 1800,SIT 4,SATI KLEE,TOLLOK TLK400,Tsubaki AD,TAS3012,V-Blok VK112,Walther CZPT MLC 4000/MLC 7000,Fenner Drive B-Loc B112,LoveJoy SLD2600, FX60,OKBS11,DRIVELOCK11
 
Locking Device KLD-33 interchange with Z4, RFN7014

Locking Device KLD-34 interchange with  Z5,BIKON 1015.0/1015.1, 7009 ECOLOC,Fenlock ,GERWAH PSV2009, KTR401,MAV 1008,RFN7015.0,Ringspann RLK401,Ringblok 1810,TOLLOK TLK451,TAS3015.0/3015.1,
 
Keyless Locking Device also call as below
1.     Welle-Nabe-Verbindungen;
2.     Wellenspannsaetze,
3.     Spannsaetze, 
4.     Taper Spannbuchsen,
5.     Taper Lock, 
6.     Keyless Locking Device,
7.     Keyless Locking  Assembly,
8.     Keyless Shaft Locking Device,
9.     Keyless Shaft Hub Locking Device,
10.  Keyless Bushings,
11.  Keyless Shaft Hub Connection,
12.  Clamping Sleeve,
13.  Clamping Element,
14.  Clamping Collar,
15.  Clamping Bush,
16.  Clamping Devices,
17.  Clamping Set,
18.  Clamping Power Lock,
19.  Cone Clamping Element,
20.  Shaft Clamping,
21.  Shaft Fixing,
22.  Shaft Fixing Cone Clamping Element, 
23.  Conical clamping rings, 
24.  Shaft Lock Clamping Element,
25.  Shaft Clamping Element,
26.  Shaft Clamping Collar,
27.  Shaft Locking Device,
28.  Shaft Hub Connection,
29.  Shaft Hub Locking Device,
30.  Shaft Hub Locking Assembly,
31.  Shaft Lock,
32.  Silted Clamping Element,
33.  Shaftlock Clamping Element,
34.  Locking Assembly,
35.  Locking Bushes,
36.  Locking Rings,
37.  Rigid Shaft Coupling,
38.  Rigid Shaft Coupler,
39.  Rigid Ring Block,
40.  Ring Shaft Lock, 
41.  Ringblock Locking Assemblies,
42.  CZPT Connection,
43.  Zinc Plated Locking Devices, 
44.  Nickel Plated Locking Assembly,
45.  Mechanical Locking Device, 
46.  Mechanical shaft lock,
47.  Schrumpfscheibe,
48.   External Locking Assembly,
49.  Narrow Hub Connection for Sprockets,
50.  Shrink Disc, 
51.  Brake Disc, 
52.  Shrink Disk,
53.  External Locking Assembly Light Duty, 
54.  Shrink Discs Standard Duty, 
55.  Shrink Disks Heavy Duty, 
56.  Smart-Lock Schrumpfscheibe, 
57.  Smart-Lock Shrink Disc, 
58.  Bearing Adapter Sleeve, 
59.  Lock Nut,
60.  POWER NUT, 
61.  POWER LINK, 
62.  Shaft Self-Lock Ring Nut, 
63.  Nickel Plated Locking Devices,  
64.  Zinc Plated Locking devices, 
65.  Stainless Steel Locking Devices.

Standard or Nonstandard: Standard
Feature: Cold-Resistant, Corrosion-Resistant, Wear-Resistant, High Temperature-Resistance
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery
Surface Treatment: Zinc Plating
Material: Carbon Steel
Rfn7015.0: 100X145
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

limiter torque

CZPT(R) Tolerance Ring For Limiter Torque

Using a limiter torque ring to limit the torque of the motor is an excellent method to maintain the smoothness and efficiency of the engine. It can also help to eliminate wear and tear on the engine due to over-revving or under-revving of the engine.

CZPT(r) Tolerance Ring

CZPT(r) Tolerance Ring is designed to limit limiter torque by providing interference fit between an inner component and an outer component. The tolerance ring is installed between a stator or compressor housing and an inner component, for example, a shaft receivable in a bore in the housing. The tolerance ring is formed of a resilient material such as spring steel.
The tolerance ring may have an outer and an inner circumference. The outer circumference may be smaller than the inner circumference and may be less than 16 mm in diameter. The tolerance ring may be formed from a sheet material. The thickness of the sheet may be less than 0.2 mm.
The tolerance ring may also include a sidewall. The sidewall includes an undeformed portion. The sidewall may be curved to form an annular ring. The tolerance ring may include one or more rows of wave structures. The wave structures may vary in shape and size, and may be located peripherally or radially around the tolerance ring.
The number of wave structures may vary, from less than 10 to more than 35. The number of wave structures may be located at the peripheral, radial, and end regions of the tolerance ring. The wave structures may be identical in size and shape, or may have different physical characteristics. The amount of torque transmitted by the tolerance ring is dependent on the stiffness of the projections. The tolerance ring can act as a force limiter or torque transmitter.
The tolerance ring may be a single-layer ring, or a two-layer ring. The first layer may be a strip or sleeve of resilient material. The second layer may be a smooth, regular surface. The first layer may be radially extending projections, a set of axially spaced protuberances, or a plurality of rounded ridges rising to a radial peak.limiter torque

CZPT TL

TL series torque converters are a good fit for a variety of applications. These products deliver a slew of benefits including a long service life and a reduced component count. They are available in several configurations including semi-open and enclosed models. They also feature air control to ensure smooth device function. The TL series is also available in multiple torque capacities ranging from a low of 1,500 lb. @ 80 psi to a high of 27,700 lb. @ 80 psi.
The TL series is equipped with several technological feats including a proximity sensor that sends a signal to a torque limiter control valve. This unit also features a single and double air pressure circuit to ensure smooth remote torque adjustment. It also features an o-ring to ensure zero air leakage.
The TL-A Series is available in sixteen models, including two with an impressive 27700 lb. @ 80 psi torque. It’s also worth noting that they can be installed in a variety of applications, including conveyors, sheet metal processing equipment, printing and converting machines and industrial robots. They are also easy to install and remove, making them a great choice for maintenance departments.
The TL-A Series also offers a number of high-end features such as a reversible shaft design and internal springs to ensure complete disengagement. They also include a hard-chrome detent interface that decreases drive-ring wear. The TL-A Series also features a single-flex coupling that delivers high shaft misalignment protection and a double-flex coupling that delivers high torsional rigidity.
TL Series torque converters are a good fit for applications that require torque in the sub-tens of thousands of pounds per square inch. They are also a good choice for industrial automation applications and can be installed in a wide variety of industries, including manufacturing, aerospace and automotive.limiter torque

IWIS FT series

FT IWIS’s FT-1000 Series aka FT IWIS’s FT t1000 series aka the FT t1000 series aka the TFT-1000 series aka the FT t1000 aka the FT t1000 FT t1000 series aka the FFT1000 series aka the FFT1000 FT t1000 aka the FFT1000 series aka FT t1000 FT t1000 FT t1000?. The FT t1000 series aka the, FT t1000 series aka the, FFT t1000 series aka the, FFT t1000 series aka FT t1000 series aka the, etc.. FT t1000 series aka the,, FFT t1000 series aka FFT t1000 series aka the FFT t1000 series aka the,.. FFT t1000 series aka the,, FT t1000 series aka FFT, FT t1000 series aka FT, FT t1000 series TA t1000 series aka the FFT, FT t1000 series, FT t1000 series aka, FFT t1000 series aka, FFT, FT t1000 series, etc.

TL-IT inline

TL-IT Inline Torque Limiter is a device that allows you to set the torque on your tools at a preset limit, and then allow the tool to run without allowing it to overtighten. This device is designed to work with low RPM power tools. It is available in four colors, and is made in the United States. It has been manufactured to NIST certification standards. It can be used to test power tools, and it is designed to control torquing through the use of a cam-over clutch action. This device also has an air-controlled positioning feature.
The TL-IT Inline Torque Limiter also has a laser marked color coded ID ring to prevent confusion if multiple tools are used. The device is also available in both metric and imperial sizes, and is certified to +/-4% accuracy in one direction.
China wholesaler Positive Torque Limiters   torque limiter couplingChina wholesaler Positive Torque Limiters   torque limiter coupling
editor by CX 2023-11-15