China Good quality 8t Crawler Jib Cranes Assembly Wireless Remote Control Elevator Spider Lifiting Crane

Product Description

Product Description

NUS 3.0A miniature crawler crane, powered by Yangma diesel engine, is A fully proportional intelligent spider crane with remote control. The power and hydraulic system are all made of original parts from Japan, making the power output efficient. CHINAMFG proportional valve is adopted in the system, can according to actual needs, to realize the stepless speed regulating, leg have a key leveling function, eliminating the tedious leg leveling operation, work more efficient, hanging arm, leg and walking to realize self-locking interlock, and install a torque control, makes the equipment operation more secure, especially equipped with step pioneering double speed winding, fast speed, high efficiency.
 

 

Detailed Photos

Adopt double speed winch; Single rate, hook with double speed, speed is 24m/min and 48m/min, winch drum capacity hit 100 meters, especially suitable for high-rise buildings of the object transport.

The lifting arm adopts double oil cylinder, unique design of 5 pieces arm, long extension, short contraction. Under the same lifting weight, the crane volume is smaller (the length of spider crane is 2.9 meters), and it can take the elevator with a load of 3 tons to go upstairs, and it can make the boom to a certain extent of load expansion.

Sensor of outrigger on the ground Each leg is equipped with grounding sensor, when the leg off the ground danger, the machine alarm, stop working.Ensure that the machine will not overturn. The crane arm is equipped with moment limiter, each length shows the corresponding limit of load, to ensure that the crane works under the safe lifting weight, and with the moment limiter together to form a double insurance, It can prevent the rollover accident and prevent overload and damage to the boom.

Interlock system After the lifting arm is reset, the supporting leg and travel can be operated to protect the safety of the crane.

380V electric power and gasoline engine (diesel engine) dual power. In places where the engine cannot be used, it can be dragged by wire for operation (especially in areas where gasoline and diesel are strictly controlled), and it can also be equipped with battery pure electric spider crane.

The outrigger is fixed from multiple angles, and the outrigger can be adjusted and fixed according to the construction environment in the face of different narrow working environment. Legs can be operated independently according to the surrounding environment, or 4 legs can be controlled by remote control at the same time to achieve one-button leveling. Beginners can also operate legs easily, so that the car body is always in a level state.

 

Product Parameters

Model NU3.0
Specification 2.95t*1.3m
Maximum working radius 8.3m*0.14t
Maximum ground lifting height 9.2m
Maximum underground lifting height
Winch device Hook speed 6.5m/min(4)
Rope type Φ8mm×45mm
Telescopic system Boom type Full automatic 5 section
Boom length 2.65m-8.92m
Telescopic length/time 6.36m/26sec
Up and downs Boom angle/time 0°-75°/14 sec
SlKB System SlKB angle/time 360°continuous/40sec
Outrigger System Outrigger active form Automatic for the 1 section,manual adjustment for 2,3 section.
Maximum extended dimensions 3900mm*3750mm
Traction System Working way Hydraulic motor driven,stepless speed change
Working speed 0-2.9Km/h
Ground length×width×2 1571mm*200mm*2
Grade ability 20°
Ground pressure 51Kpa
Safety Devices Air level,Moment limiter(Height limiter),Alarm Device,Emergency Stop Button
System voltage DC12V  
Diesel engine (optional) Type 2TNV70-PYU
Displacement 570ml
Maximum output 7.5kw
Starting method Electric staring
Fuel tank capacity 11L
Operation temperature -5°C-40°C
Battery capacity 12v45Ah
Petrol engine Model Kohler
Displacement 389.2ml
Maximum output 6.6kw
Starting method Recoil start/electric starting
Fuel tank capacity 6L
Operation temperature -5°C-40°C
Battery capacity 12v 36Ah
Electric motor Power suppler voltage AC 380V
Power 4KW
Remote Control Type BOX1.1(optional)
Operation range 100m
Water -proof standard IP67
Dimension Length *width *length 2900mm*800mm*1450mm
Weight Vehicle weight 2050kg
Package size   3200mm*1200mm*1900mm

Packaging & Shipping

 

Product advantange

The plane is full remote control models of 3 tons crawler crane, the function is all ready fuselage compact, hydraulic walking, safety design can prevent wrong operation, to adapt to the rugged outdoors, u-shaped telescopic boom, a weight display, leg sensor protection, high strength, and by using the 3 tons of the company the first winding double speed, high speed, efficient fast, cost-effective.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Give The Solution Within 6 Hours
Max. Lifting Height: 9.2m
Rated Loading Capacity: 3ton
Certification: ISO9001, CE
Condition: New
Warranty: 1 Year
Customization:
Available

|

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China Good quality 8t Crawler Jib Cranes Assembly Wireless Remote Control Elevator Spider Lifiting Crane  China Good quality 8t Crawler Jib Cranes Assembly Wireless Remote Control Elevator Spider Lifiting Crane
editor by CX 2023-12-22